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Abstract

In this paper, we have obtained a generalization of a known result on
quasi-bilateral generating relation involving Gegenbauer polynomials
from the existence of partial quasi-bilateral generating relation of the
polynomial under consideration. Some particular cases of interest are
also pointed out.
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1. Introduction
In [1],Mondal defined partial quasi-bilateral generating for two special functions by

means of the relation:
Glx,u,w) = 2o a, B () Q™™ (wyw™,

wherea,,, the coefficients are quite arbitrary and P,fffn(x), Qf’”*")(u) are two
particular special functions of orders m +n,r and of parameters « and m+n

respectively. If Q™™ (u) = P™*™ (u) , the generating relation is known as partial
quasi-bilinear.
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In this note, we would like to show that the existence of a partial quasi-bilinear
generating function implies the existence of a more general generating function from

the group theoretic view-point.
In [2], Samanta, Chandra and Bera have proved the following theorem on bilateral

generating functions involving modified Gegenbauer poynomials, C;**™(x) by group-

theoretic method.
Theorem 1 If there exists a unilateral generating relation of the form

Glx,w) = Y% a,CH(x) w" (1.1)

then
A-2 _
(1-w) 22 e x - wv(1-w) ; (1.1)
{1-w+wx?} {1-w+wx2 2 {1-w+wx?2 }2
- Z?c’)lo=0 Wn O-n(x’v)i (12)
where

R

p 0 p(n p)!(1-1- p)np Zn-p

(x) vP.

Un(x v) =

The importance of the above theorem lies in the fact that whenever one knows a
unilateral generating relation of the form (1.1) then the corresponding bilateral
generating relation can at once be written down from ( 1.2). So one can get a large
number of bilateral generating relations by attributing different suitable values to a,, in
(1.2).

Subsequently, In [3], Samanta and Chongdar obtained an extension of the above
theorem in the following form:

Theorem 2 If there exists a unilateral generating relation of the form

G(x,w) = X5oo an Gyt (x) wh (1.3)
Then

a-1 _
(=w) ra< r L wlow) 3>=zz=ow"an(x,v), (1.4

{1-w+wx? } {1-w+wx?2 2 {1-w+wx2? J2

Where

p+r+1 p+r+2

n

O'(XU)ZE a( 2 )n—p( 2 )np An+2p()p
n ’ D (n_p)l(l_l_p)n—p 2n+T D

p=0
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In [4], authors have obtained a nice extension of the Theorem 1 from the existence
of quasi-bilinear generating relation.

Theorem 3 If there exists a quasi-bilinear generating relation of the following form

Glx,u,w) = 32 a, CAH(x)CE (u)w™
then
m

1- 2W)1_7_%{1 —2w(l—x?)}4

X u wt
xG < T I 3)
{ 1—2w(1-x2)}2  (A-2w)2{ 1-2w(1-x2) }?

ety )0, iy

Z OZ qu =0 Qan g 2P+q . n) n+2p ( )Cn+Q(u)tn

The object of the present paper is to further generalize the above theorem from the
concept of partial quasi-bilateral(or partial quasi-bilinear) generating functions. In fact,
we have obtained the following theorem as the main result of our investigation.

Theorem 4 If there exists a partial quasi-bilinear generating relation of the
following form

GQx,u,w) = X2 a, G (x)CT (wW)w™
Then

(A— 2wy 5 3 T {1—2w(@—x?) ) 2

X u wt
x G( T T ;)
{ 1-2w(1-x2)}2 (1-2w)2 { 1-2w(1-x2)}2

s (n+r+1) (n+r+2) (n47)
whPra 2 2 q /1+n p n+r+q
i B gy o gL A () e

2. Proof of the theorem
At first we consider the generating relation of the form:

e}

GQx,u,w) = Z a,C A (x)CT (uw)w™. (2.1)

n=0

For the Gegenbauer polynomials, we consider the following operators[3,5]:
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y? 6 y3 6 2 2y2 9
R, =x(1- xz) + 1- 3x2) xzzy %

0 0
R, =uv—+2v2%+ (m+2r)v

ou
such that
n+r+1)(n+r+2) )
R, (CHR(x)ymz?) = PTeRyp— CHN=1(x)y™ 22773,
Rz (Cnrl1+r(u)vn) — z(n + T)Cnrll+r+1(u)vn+1
And
1 T
yz 3 5 yZ )
e"fif(x, y, z) 2{1—2WZ—3} {1—2W(1—x );}
2 2
x f x _ y(1—2w}zl—3) 2(1—2w3z’—3)

{1_2W(1_xz)3zz_:}5 {1_2W(1_x2)3z,_:}%’ {1—2w(1_x2)3zz_:} )

eWsz(u,v)=(1—2wv)_%_rf< - — >

(1-2wv)2 (1—-2wv)
Replacing w by wvyt and multiplying both sides of (2.1) by z#, we get
z* G(x, u,wvyt) = Z an (CH(x)y™z*)(CET (w)v™) (wE)™.

n=0

Now operating e%®1 e"Rz on both sides of (2.6), we get
eWR1eWR2[22G (x, u, wuyt)| =
eRieWR [y a, (CAT(x)y"2h) (CETWv™) we)]
The left member of (2.71), with the help of (2.4) and (2.5), becomes
(1- 2w§—2)1_5{ 1-2w(l-x2)% }

2

) 1- 2W17)_%_Tz’1

y2
x u vat(l— 2Wz—3)
x G 1 1 3

{ 1—2w(1—x2)321—§}5 (1_2‘””)5{ 1—2w(1—x2)321—§}5(1—2wv)

2

—+ (1 +7r—rx? )y3,
z

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
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The right member of (2.7), with the help of (2.2) and (2.3), becomes

n+r+1) (n+r+2) (n+r)q
14

© & w2 2/,
2,0, 0 o 2
p'q! (1-21-n),

n=0p=0qg=0

A+n— +7r+ -
X Coirasp(C 0TIy Ay (W) (29)

Now equating both members, and then substituting y =z = v = 1, we get

_____ -2
Q-2w)* 2727 "{1-2w(@d - x?)} ?
= G< X u wt )
1 19
{1—2w(@1-x?2)}2 (1-2w)2 { 1-2w(1-x2)}2
ntpt (n+2r+1) (n+2r+2) (Tl+T) , e
oo Zpno Bino an i 2 S G (G e 210)

This completes the proof of Theorem 4.
Corollary 1: Putting r = 0 in (10), we get

(1- 2w)1‘%‘§{1— ZW(l—xZ)}_A

X u wt
xG( T T J
{ 1—2w(1-x2)}2 (1-2w)2 {1-2w(1-x2)}?

n+1 n+2
Wn+p+q 2p+q ( 2 )p( 2 ) ( )q /'1+n p
plq! (1-1-n), n+2P

D=0 2p=0 2q=0 An (x )Cn+q(u)tn

whichis Theorem 3. Thus Theorem 4 is an extension of Theorem 3.
Corollary 2: If we put m =0, we notice that G(x,u,w) becomes G(x,w) since
C 9 (w) = 1. Hence from (2.10), we get

(1—2w)* 27 7{1 - 2w(l — x?) }_g_l

< G( X — wt 3)
{1—2w(1-x2)}2 {1-2w(1-x2)}?
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whHp (%) (n+2r+2) l (2w)q(n+7")
14 +n-p o q
ozp =0 an . 2P o, n+r+2p( )tn( . )
Z Z (ZW)nHJ (n+;+1)p(n+;+2) )L+7'l -p ( ){ }7’1 (1 _
=0 Zp=0an", (1-2-n)p Chirvap 2(1-2w)
2w) T

Replacing ( ) by v and then 2w by w on both sides, we get

X wv(1l—w)

{1-w@-x2F {1-wl-x)}

(A—w)* "2{1-w(l—x?) ) 274G

n+r+1) (n+r+2
14

O\ (w)nﬂ’( 2 2 ),, M ()
_ZZ (1_/1_n)p n+T+2p( )

o 7 —p+r+1\ m—p+r+2
— ( 2 )P( 2 ) A+n -2p n-p
_ZZ (1-A-n+p), Crvrep ()Y
Therefore we have
(1—W)’1_%{1—W(1—x2) }_g_AG( - T wo(l = w) 3>
{1-w@-x3)}z {1-w(@-x?)}2

=Y owm o, (x,v),

Where

(p+2r+1)n p(p+;+2)n L Cll 20

P 0dp (n-p) {1-A=P)p—p 2n+r— p( )vp.

o,(x,v) =

Corollary 3:1f we put r = 0 in the above result, we get the Theorem 1.
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