# Root Square Mean Labeling of Subdivision of Some More Graphs

S.S.Sandhya<sup>1</sup>S.Somasundaram<sup>2</sup>S.Anusa<sup>3</sup>

 Department of Mathematics,Sree Ayyappa College for Women, Chunkankadai : 629003.Nagercoil. Email:sssandhya2009@gmail.com
 Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli: 627012. Email:somutvl@gmail.com
 Department of Mathematics, Arunachala College of Engineering for Women, Vellichanthai-629203 Nagercoil. Email: anu12343s@gmail.com

### Abstract

A graph G = (V, E) with p vertices and q edges is called a Root Square Mean graph if it is possible to label the vertices  $x \in V$  with distinct labels f(x) from 1, 2, ..., q + 1 in such a way that when each edge e = uv is labeled with  $f(e = uv) = \left[\sqrt{\frac{f(u)^2 + f(v)^2}{2}}\right]$  or  $\left[\sqrt{\frac{f(u)^2 + f(v)^2}{2}}\right]$ , then the edge labels are distinct. In this case f is called Root Square Mean Labeling of G. In this paper we prove that subdivision of some graphs are Root Square Mean graphs.

**Key Words:** Graph, Root Square Mean graph, Triangular Snake, Quadrilateral Snake, Alternate Triangular Snake, Alternate Quadrilateral Snake.

### **1. Introduction**

All graphs in this paper are finite, simple, and undirected graph G = (V, E) with p vertices and q edges. For all detailed survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notations we follow Harary [2]. Root Square Mean labeling was introduced by S.S.Sandhya, S.Somasundaram, and S.Anusa in [3] and studied their behavior in[4], [5], [6], [7], [8], [9], [10]. In this paper we prove that subdivision of some graphs are Root Square Mean graphs. The following definitions and theorems are necessary for our present study.

**Definition1.1:** A graph G = (V, E) with p vertices and q edges is called a Root Square Mean graph if it is possible to label the vertices  $x \in V$  with distinct labels f(x) from 1, 2, ..., q + 1 in such a way that when each edge e = uv is labeled with  $f(e = uv) = \left[\sqrt{\frac{f(u)^2 + f(v)^2}{2}}\right]$  or  $\left[\sqrt{\frac{f(u)^2 + f(v)^2}{2}}\right]$ , then the edge labels are distinct. In this case f is called Root Square Mean Labeling of G.

**Definition1.2:** A Triangular Snake  $T_n$  is obtained from a path  $u_1u_2 \cdots u_n$  by joining  $u_i$  and  $u_{i+1}$  to a new vertex  $v_i$ ,  $1 \le i \le n-1$ .

**Definition1.3:** An Alternate Triangular Snake  $A(T_n)$  is obtained from a path  $u_1u_2\cdots u_n$  by joining  $u_i$  and  $u_{i+1}$  (Alternatively) to a new vertex  $v_i$ .

**Definition1.4:** A Quadrilateral Snake  $Q_n$  is obtained from a path  $u_1u_2 \cdots u_n$  by joining  $u_i$  and  $u_{i+1}$  to two new vertices  $v_i$  and  $w_i$ ,  $1 \le i \le n-1$  respectively and then joining  $v_i$  and  $w_i$ .

**Definition1.5:** An Alternate Quadrilateral Snake  $A(Q_n)$  is obtained from a path  $u_1u_2\cdots u_n$  by joining  $u_i$  and  $u_{i+1}$  (Alternatively) to new vertices  $v_i$  and  $w_i$  respectively and then joining  $v_i$  and  $w_i$ .

**Theorem1.6:** A Triangular snake  $T_n$  is a Root Square Mean graph.

**Theorem1.7:** Alternate Triangular Snake  $A(T_n)$  is a Root Square Mean graph.

**Theorem 1.8:** A Quadrilateral Snake  $Q_n$  is a Root Square Mean graph.

**Theorem1.9:** Alternate Quadrilateral Snake  $A(Q_n)$  is a Root Square Mean graph.

#### 2.Main Results

**Theorem 2.1:**  $S(T_n)$  is a Root Square Mean graph.

**Proof:** Let  $u_1u_2 \cdots u_n$  be a path of length *n*. Let  $T_n$  be the triangular snake obtained by joining  $u_i$  and  $u_{i+1}$  to a new vertex  $v_i$ ,  $1 \le i \le n-1$ . Let us subdivide the edges of  $T_n$ . Here we consider the following cases.

**Case(1):** *G* is obtained by subdividing each edge of the path. Let  $t_1, t_2, \dots, t_{n-1}$  be the vertices which subdivide the edge  $u_i u_{i+1}$ . Define a function  $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$  by  $f(u_i) = 4i - 3, 1 \le i \le n$  $f(v_i) = 4i - 2, 1 \le i \le n - 1$  $f(t_i) = 4i, 1 \le i \le n - 1$  Then the edges are labeled as  $f(u_i v_i) = 4i - 3, 1 \le i \le n - 1$   $f(u_i t_i) = 4i - 2, 1 \le i \le n - 1$   $f(t_i u_{i+1}) = 4i, 1 \le i \le n - 1$  $f(v_i u_{i+1}) = 4i - 1, 1 \le i \le n - 1$ 

Then we get distinct edge labels. Hence f is a Root Square Mean labeling of G. The labeling pattern of  $S(T_5)$  is shown below.





**Case(2):** *G* is obtained by subdividing the edges  $u_i v_i$  and  $u_{i+1} v_i$ . Let  $x_i$  and  $y_i$  be the two vertices which subdivide the edges  $u_i v_i$  and  $u_{i+1}v_i, 1 \le i \le n-1$  respectively. Define a function  $f: V(G) \to \{1, 2, ..., q+1\}$  by  $f(u_i) = 5i - 4, 1 \le i \le n$  $f(v_i) = 5i - 2, 1 \le i \le n-1$  $f(x_i) = 5i - 3, 1 \le i \le n-1$  $f(y_i) = 5i - 1, 1 \le i \le n-1$ 

Then the edges are labeled as  $f(u_i x_i) = 5i - 4, 1 \le i \le n - 1$   $f(x_i v_i) = 5i - 3, 1 \le i \le n - 1$   $f(v_i y_i) = 5i - 2, 1 \le i \le n - 1$   $f(y_i u_{i+1}) = 5i, 1 \le i \le n - 1$  $f(u_i u_{i+1}) = 5i - 1, 1 \le i \le n - 1$ 

Then we get distinct edge labels. Hence f is a Root Square Mean labeling of G. The labeling pattern of  $S(T_5)$  is shown below.



255

**Figure2** 

**Case(3):** *G* is obtained by subdividing all the edges of  $T_n$ .

Let  $x_i, y_i$  and  $t_i$  be the vertices which subdivide the edges  $u_i v_i, v_i u_{i+1}$  and  $u_i u_{i+1}$  respectively. Define a function  $f: V(G) \rightarrow \{1, 2, ..., q + 1\}$  by  $f(u_i) = 6i - 5, 1 \le i \le n$  $f(v_i) = 6i - 3, 1 \le i \le n - 1$  $f(x_i) = 6i - 4, 1 \le i \le n - 1$  $f(y_i) = 6i - 1, 1 \le i \le n - 1$  $f(t_i) = 6i - 2, 1 \le i \le n - 1$ 

Then the edges are labeled as  $f(u_i t_i) = 6i - 3, 1 \le i \le n - 1$   $f(u_i x_i) = 6i - 5, 1 \le i \le n - 1$   $f(x_i v_i) = 6i - 4, 1 \le i \le n - 1$   $f(t_i u_{i+1}) = 6i - 1, 1 \le i \le n - 1$   $f(v_i y_i) = 6i - 2, 1 \le i \le n - 1$  $f(y_i u_{i+1}) = 6i, 1 \le i \le n - 1$ 

Then we get distinct edge labels. Hence f is a Root Square Mean labeling of G. The labeling pattern of  $S(T_5)$  is shown below.



From case(1) case(2), case(3), it can be seen that  $S(T_n)$  is a Root Square Mean graph.

**Theorem 2.2:**  $S(Q_n)$  is a Root Square Mean graph.

**Proof:** Let  $u_1u_2 \cdots u_n$  be a path  $P_n$  .Join  $u_i$  and  $u_{i+1}$  to new vertices  $v_i$  and  $w_i , 1 \le i \le n-1$  respectively and then joining  $v_i$  and  $w_i$ . The resulting graph is a Quadrilateral snake  $Q_n$ . Let G be the graph obtained by subdividing the edges of  $Q_n$ . Here we consider the following cases.

**Case(1):** *G* is obtained by subdividing the edges of the path. Let  $t_1, t_2, \dots, t_{n-1}$  be the vertices which subdivide the edge  $u_i u_{i+1}, 1 \le i \le n-1$ . Define a function  $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$  by  $f(u_i) = 5i - 4, 1 \le i \le n$  $f(v_i) = 5i - 3, 1 \le i \le n-1$  $f(w_i) = 5i - 2, 1 \le i \le n-1$  $f(t_i) = 5i, 1 \le i \le n-1$ Then the edges are labeled as  $f(u_i v_i) = 5i - 4, 1 \le i \le n - 1$   $f(v_i w_i) = 5i - 3, 1 \le i \le n - 1$   $f(w_i u_{i+1}) = 5i - 1, 1 \le i \le n - 1$   $f(u_i t_i) = 5i - 2, 1 \le i \le n - 1$  $f(t_i u_{i+1}) = 5i, 1 \le i \le n - 1$ 

Then the edge labels are distinct. Hence G is a Root Square Mean graph. The labeling pattern of  $S(Q_5)$  is shown below.



```
Case(2): G is obtained by subdividing all the edges of Q_n.
Let t_i, x_i, s_i, y_i be the vertices which subdivide the edges u_i u_{i+1}, u_i v_i, v_i w_i and w_i u_{i+1} respectively. Define a function f: V(G) \rightarrow \{1, 2, ..., q + 1\} by f(u_i) = 8i - 7, 1 \le i \le n
```

 $f(u_i) = 8i - 7, 1 \le i \le n$   $f(x_i) = 8i - 6, 1 \le i \le n - 1$   $f(v_i) = 8i - 5, 1 \le i \le n - 1$   $f(s_i) = 8i - 4, 1 \le i \le n - 1$   $f(w_i) = 8i - 3, 1 \le i \le n - 1$   $f(y_i) = 8i - 2, 1 \le i \le n - 1$  $f(t_i) = 8i, 1 \le i \le n - 1$ 

Then the edges are labeled as

 $f(u_i x_i) = 8i - 7, 1 \le i \le n - 1$   $f(x_i v_i) = 8i - 6, 1 \le i \le n - 1$   $f(v_i s_i) = 8i - 5, 1 \le i \le n - 1$   $f(s_i w_i) = 8i - 4, 1 \le i \le n - 1$   $f(w_i y_i) = 8i - 2, 1 \le i \le n - 1$   $f(y_i u_{i+1}) = 8i - 1, 1 \le i \le n - 1$   $f(u_{i+1} t_i) = 8i, 1 \le i \le n - 1$  $f(t_i u_i) = 8i - 3, 1 \le i \le n - 1$ 

Then the edge labels are distinct. Hence G is a Root Square Mean graph. The labeling pattern of  $S(Q_4)$  is shown below.



From case(1), case(2), it is clear that,  $S(Q_n)$  is a Root Square Mean graph.

**Theorem2.3:**  $S(A(T_n))$  is a Root Square Mean graph.

**Proof:** Let  $u_1u_2\cdots u_n$  be the path. Let  $A(T_n)$  be the alternate triangular snake obtained by joining  $u_i$  and  $u_{i+1}$  (Alternatively) to a new vertex  $v_i$ ,  $1 \le i \le n-1$ . Let G be the graph obtained by subdividing the edges of  $A(T_n)$ . Here we consider two cases

**Case(1):** If the triangle starts from  $u_1$ . Let  $t_i, x_i, y_i$  be the vertices which subdivide the edges  $u_i u_{i+1}, u_i v_i, v_i u_{i+1}$ respectively.

Here we have to consider two sub cases

**Sub case(1.a):** If *n* is odd

Define a function 
$$f: V(G) \to \{1, 2, ..., q + 1\}$$
 by  
 $f(u_i) = \begin{cases} 4i - 3, i = 1, 3, 5, ..., n \\ 4i - 1, i = 2, 4, 6, ..., n - 1 \end{cases}$   
 $f(v_i) = 8i - 5, 1 \le i \le \frac{n - 1}{2}$   
 $f(x_i) = 8i - 6, 1 \le i \le \frac{n - 1}{2}$   
 $f(y_i) = 8i - 4, 1 \le i \le \frac{n - 1}{2}$   
 $f(t_i) = \begin{cases} 4i + 2, i = 1, 3, 5, ..., n - 2 \\ 4i, i = 2, 4, 6, ..., n - 1 \end{cases}$ 

Then the edges are labeled as

Then the edges are labeled as  $f(u_i t_i) = \begin{cases} 4i, \ i = 1, 3, 5, \dots, n-2 \\ 4i - 1, \ i = 2, 4, 6, \dots, n-1 \\ f(t_i u_{i+1}) = \begin{cases} 4i + 2, \ i = 1, 3, 5, \dots, n-2 \\ 4i, \ i = 2, 4, 6, \dots, n-1 \end{cases}$   $f(u_{2i-1}x_i) = 8i - 7, \ 1 \le i \le \frac{n-1}{2}$   $f(x_i v_i) = 8i - 6, \ 1 \le i \le \frac{n-1}{2}$ 

$$f(v_i y_i) = 8i - 5, 1 \le i \le \frac{n - 1}{2}$$
  
$$f(y_i u_{2i}) = 8i - 3, 1 \le i \le \frac{n - 1}{2}$$

Then the edge labels are distinct. Hence G is a Root Square Mean graph. The labeling pattern of  $S(A(T_5))$  is shown below.



Sub Case(1.b): If *n* is even  
Define a function 
$$f: V(G) \rightarrow \{1, 2, ..., q + 1\}$$
 by  
 $f(u_i) = \begin{cases} 4i - 3, i = 1, 3, 5, ..., n - 1 \\ 4i - 1, i = 2, 4, 6, ..., n \end{cases}$   
 $f(v_i) = 8i - 5, 1 \le i \le \frac{n}{2}$   
 $f(x_i) = 8i - 6, 1 \le i \le \frac{n}{2}$   
 $f(y_i) = 8i - 4, 1 \le i \le \frac{n}{2}$   
 $f(t_i) = \begin{cases} 4i + 2, i = 1, 3, 5, ..., n - 1 \\ 4i, i = 2, 4, 6, ..., n - 2 \end{cases}$ 

Then the edges are labeled as

$$f(u_{i}t_{i}) = \begin{cases} 4i, i = 1,3,5,\dots, n-1\\ 4i-1, i = 2,4,6,\dots, n-2 \end{cases}$$

$$f(t_{i}u_{i+1}) = \begin{cases} 4i+2, i = 1,3,5,\dots, n-1\\ 4i, i = 2,4,6,\dots, n-2 \end{cases}$$

$$f(u_{2i-1}x_{i}) = 8i-7, 1 \le i \le \frac{n}{2}$$

$$f(x_{i}v_{i}) = 8i-6, 1 \le i \le \frac{n}{2}$$

$$f(v_{i}y_{i}) = 8i-5, 1 \le i \le \frac{n}{2}$$

$$f(y_{i}u_{2i}) = 8i-3, 1 \le i \le \frac{n}{2}$$

Then the edge labels are distinct. Hence G is a Root Square Mean graph. The labeling pattern of  $S(A(T_6))$  is shown below.





**Case(2)** If the triangle starts from  $u_2$ .

Let  $t_i, x_i, y_i$  be the vertices which subdivide the edges  $u_i u_{i+1}, u_i v_i, v_i u_{i+1}$  respectively.

Here we have to consider two sub cases

Sub case(2.a): If n is odd  
Define a function 
$$f: V(G) \to \{1, 2, ..., q + 1\}$$
 by  
 $f(u_i) = \begin{cases} 4i - 3, i = 1, 3, 5, ..., n \\ 4i - 5, i = 2, 4, 6, ..., n - 1 \end{cases}$   
 $f(v_i) = 8i - 3, 1 \le i \le \frac{n - 1}{2}$   
 $f(x_i) = 8i - 4, 1 \le i \le \frac{n - 1}{2}$   
 $f(y_i) = 8i - 2, 1 \le i \le \frac{n - 1}{2}$   
 $f(t_i) = \begin{cases} 4i - 2, i = 1, 3, 5, ..., n - 2 \\ 4i, i = 2, 4, 6, ..., n - 1 \end{cases}$ 

Then the edges are labeled as

$$f(u_{i}t_{i}) = \begin{cases} 4i - 3, \ i = 1,3,5, \dots, n-2\\ 4i - 2, \ i = 2,4,6, \dots, n-1 \end{cases}$$

$$f(t_{i}u_{i+1}) = \begin{cases} 4i - 2, \ i = 1,3,5, \dots, n-2\\ 4i, \ i = 2,4,6, \dots, n-1 \end{cases}$$

$$f(u_{2i}x_{i}) = 8i - 5, 1 \le i \le \frac{n-1}{2}$$

$$f(x_{i}v_{i}) = 8i - 4, 1 \le i \le \frac{n-1}{2}$$

$$f(v_{i}y_{i}) = 8i - 3, 1 \le i \le \frac{n-1}{2}$$

$$f(y_{i}u_{2i+1}) = 8i - 1, 1 \le i \le \frac{n-1}{2}$$

Then the edge labels are distinct. Hence G is a Root Square Mean graph. The labeling pattern of  $S(A(T_5))$  is shown below.





Sub case(2.b): If n is even  
Define a function 
$$f: V(G) \to \{1, 2, ..., q + 1\}$$
 by  
 $f(u_i) = \begin{cases} 4i - 3, i = 1, 3, 5, ..., n - 1 \\ 4i - 5, i = 2, 4, 6, ..., n \end{cases}$   
 $f(v_i) = 8i - 3, 1 \le i \le \frac{n - 2}{2}$   
 $f(x_i) = 8i - 4, 1 \le i \le \frac{n - 2}{2}$   
 $f(y_i) = 8i - 2, 1 \le i \le \frac{n - 2}{2}$   
 $f(t_i) = \begin{cases} 4i - 2, i = 1, 3, 5, ..., n - 1 \\ 4i, i = 2, 4, 6, ..., n - 2 \end{cases}$ 

Then the edges are labeled as

$$f(u_{i}t_{i}) = \begin{cases} 4i - 3, \ i = 1,3,5, \dots, n-1 \\ 4i - 2, \ i = 2,4,6, \dots, n-2 \end{cases}$$

$$f(t_{i}u_{i+1}) = \begin{cases} 4i - 2, \ i = 1,3,5, \dots, n-1 \\ 4i, \ i = 2,4,6, \dots, n-2 \end{cases}$$

$$f(u_{2i}x_{i}) = 8i - 5, 1 \le i \le \frac{n-2}{2}$$

$$f(x_{i}v_{i}) = 8i - 4, 1 \le i \le \frac{n-2}{2}$$

$$f(v_{i}y_{i}) = 8i - 3, 1 \le i \le \frac{n-2}{2}$$

$$f(y_{i}u_{2i+1}) = 8i - 1, 1 \le i \le \frac{n-2}{2}$$

Then the edge labels are distinct. Hence G is a Root Square Mean graph. The labeling pattern of  $S(A(T_6))$  is shown below.



From case(1) and case(2),  $S(A(T_n))$  is a Root Square Mean graph.

**Theorem2.4:**  $S(A(Q_n))$  is a Root Square Mean graph.

**Proof:** Let  $u_1u_2\cdots u_n$  be the path .  $A(Q_n)$  is obtained by joining  $u_i$  and  $u_{i+1}$  (Alternatively) to two new vertices  $v_i$  and  $w_i$  respectively and then joining  $v_i$  and  $w_i$ . Let G be the graph obtained by subdividing the edges of  $A(Q_n)$ . Here we consider two cases.

**Case(1):** If the Quadrilateral snake starts from  $u_1$ . Let  $t_i, x_i, y_i, s_i$  be the vertices which subdivide the edges  $u_i u_{i+1}, u_i v_i, w_i u_{i+1}, v_i w_i$  respectively.

Here we have to consider two sub cases.

```
Sub case(1.a): If n is odd.
```

Define a function 
$$f: V(G) \to \{1, 2, ..., q + 1\}$$
 by  
 $f(u_i) = \begin{cases} 5i - 4, i = 1, 3, 5, ..., n \\ 5i - 1, i = 2, 4, 6, ..., n - 1 \end{cases}$   
 $f(v_i) = 10i - 7, 1 \le i \le \frac{n - 1}{2}$   
 $f(w_i) = 10i - 5, 1 \le i \le \frac{n - 1}{2}$   
 $f(x_i) = 10i - 8, 1 \le i \le \frac{n - 1}{2}$   
 $f(y_i) = 10i - 4, 1 \le i \le \frac{n - 1}{2}$   
 $f(s_i) = 10i - 6, 1 \le i \le \frac{n - 1}{2}$   
 $f(t_i) = \begin{cases} 5i + 2, i = 1, 3, 5, ..., n - 2 \\ 5i, i = 2, 4, 6, ..., n - 1 \end{cases}$ 

Then the edges are labeled as  $f(u_i t_i) = \begin{cases} 5i, i = 1, 3, 5, \dots, n-2\\ 5i - 1, i = 2, 4, 6, \dots, n-1 \end{cases}$   $f(t_i u_{i+1}) = \begin{cases} 5i + 3, i = 1, 3, 5, \dots, n-2\\ 5i, i = 2, 4, 6, \dots, n-1 \end{cases}$   $f(u_{2i-1}x_i) = 10i - 9, 1 \le i \le \frac{n-1}{2}$   $f(x_i v_i) = 10i - 8, 1 \le i \le \frac{n-1}{2}$   $f(v_i s_i) = 10i - 7, 1 \le i \le \frac{n-1}{2}$   $f(v_i s_i) = 10i - 6, 1 \le i \le \frac{n-1}{2}$   $f(w_i y_i) = 10i - 4, 1 \le i \le \frac{n-1}{2}$ 

262

Root Square Mean Labeling of Subdivision of Some More Graphs

$$f(y_i u_{2i}) = 10i - 3, 1 \le i \le \frac{n-1}{2}$$

Then the edge labels are distinct. Hence G is a Root Square Mean graph. The labeling pattern of  $S(A(Q_5))$  is shown below.





Sub case(1.b) If n is even  
Define a function 
$$f: V(G) \to \{1, 2, ..., q + 1\}$$
 by  
 $f(u_i) = \begin{cases} 5i - 4, i = 1, 3, 5, ..., n - 1\\ 5i - 1, i = 2, 4, 6, ..., n \end{cases}$   
 $f(v_i) = 10i - 7, 1 \le i \le \frac{n}{2}$   
 $f(w_i) = 10i - 5, 1 \le i \le \frac{n}{2}$   
 $f(x_i) = 10i - 8, 1 \le i \le \frac{n}{2}$   
 $f(y_i) = 10i - 4, 1 \le i \le \frac{n}{2}$   
 $f(s_i) = 10i - 6, 1 \le i \le \frac{n}{2}$   
 $f(t_i) = \begin{cases} 5i + 2, i = 1, 3, 5, ..., n - 1\\ 5i, i = 2, 4, 6, ..., n - 2 \end{cases}$ 

Then the edges are labeled as  $f(u_i t_i) = \begin{cases} 5i, i = 1, 3, 5, \dots, n-1 \\ 5i - 1, i = 2, 4, 6, \dots, n-2 \\ f(t_i u_{i+1}) = \begin{cases} 5i + 3, i = 1, 3, 5, \dots, n-1 \\ 5i, i = 2, 4, 6, \dots, n-2 \end{cases}$   $f(u_{2i-1}x_i) = 10i - 9, 1 \le i \le \frac{n}{2}$   $f(x_i v_i) = 10i - 8, 1 \le i \le \frac{n}{2}$   $f(v_i s_i) = 10i - 7, 1 \le i \le \frac{n}{2}$   $f(v_i s_i) = 10i - 6, 1 \le i \le \frac{n}{2}$   $f(w_i y_i) = 10i - 4, 1 \le i \le \frac{n}{2}$ 

$$f(y_i u_{2i}) = 10i - 3, 1 \le i \le \frac{n}{2}$$

Then the edge labels are distinct. Hence G is a Root Square Mean graph. The labeling pattern of  $S(A(Q_6))$  is shown below.



**Case(2):** If the triangle starts from  $u_2$ .

Let  $t_i, x_i, y_i, s_i$  be the vertices which subdivide the edges  $u_i u_{i+1}, u_i v_i, w_i u_{i+1}, v_i w_i$  respectively.

Here we consider two sub cases

Sub case(1.a): If n is odd. Define a function  $f: V(G) \to \{1, 2, ..., q + 1\}$  by  $f(u_i) = \begin{cases} 5i - 4, i = 1, 3, 5, ..., n \\ 5i - 7, i = 2, 4, 6, ..., n - 1 \end{cases}$   $f(v_i) = 10i - 5, 1 \le i \le \frac{n - 1}{2}$   $f(w_i) = 10i - 3, 1 \le i \le \frac{n - 1}{2}$   $f(x_i) = 10i - 6, 1 \le i \le \frac{n - 1}{2}$   $f(y_i) = 10i - 2, 1 \le i \le \frac{n - 1}{2}$   $f(s_i) = 10i - 4, 1 \le i \le \frac{n - 1}{2}$  $f(t_i) = \begin{cases} 5i - 3, i = 1, 3, 5, ..., n - 2 \\ 5i - 1, i = 2, 4, 6, ..., n - 1 \end{cases}$ 

Then the edges are labeled as

$$f(t_i u_{i+1}) = \begin{cases} 5i - 3, i = 1, 3, 5, \dots, n-2\\ 5i, i = 2, 4, 6, \dots, n-1 \end{cases}$$
  
$$f(u_i t_i) = 5i - 4, 1 \le i \le n-1$$
  
$$f(u_{2i} x_i) = 10i - 7, 1 \le i \le \frac{n-1}{2}$$
  
$$f(x_i v_i) = 10i - 6, 1 \le i \le \frac{n-1}{2}$$
  
$$f(v_i s_i) = 10i - 5, 1 \le i \le \frac{n-1}{2}$$

264

$$f(s_i w_i) = 10i - 3, 1 \le i \le \frac{n - 1}{2}$$
  
$$f(w_i y_i) = 10i - 2, 1 \le i \le \frac{n - 1}{2}$$
  
$$f(y_i u_{2i+1}) = 10i - 1, 1 \le i \le \frac{n - 1}{2}$$

Then the edge labels are distinct. Hence G is a Root Square Mean graph. The labeling pattern of  $S(A(Q_5))$  is shown below.



Sub case(1.a): If n is even.  
Define a function 
$$f: V(G) \to \{1, 2, ..., q + 1\}$$
 by  
 $f(u_i) = \begin{cases} 5i - 4, i = 1, 3, 5, ..., n - 1 \\ 5i - 7, i = 2, 4, 6, ..., n \end{cases}$   
 $f(v_i) = 10i - 5, 1 \le i \le \frac{n - 2}{2}$   
 $f(w_i) = 10i - 3, 1 \le i \le \frac{n - 2}{2}$   
 $f(x_i) = 10i - 6, 1 \le i \le \frac{n - 2}{2}$   
 $f(y_i) = 10i - 2, 1 \le i \le \frac{n - 2}{2}$   
 $f(s_i) = 10i - 4, 1 \le i \le \frac{n - 2}{2}$   
 $f(t_i) = \begin{cases} 5i - 3, i = 1, 3, 5, ..., n - 1 \\ 5i - 1, i = 2, 4, 6, ..., n - 2 \end{cases}$ 

Then the edges are labeled as  $f(t_{i}u_{i+1}) = \begin{cases} 5i - 3, \ i = 1, 3, 5, \dots, n-1 \\ 5i, \ i = 2, 4, 6, \dots, n-2 \\ f(u_{i}t_{i}) = 5i - 4, 1 \le i \le n-1 \end{cases}$  $f(u_{2i}x_i) = 10i - 7, 1 \le i \le \frac{n-2}{2}$  $f(x_iv_i) = 10i - 6, 1 \le i \le \frac{n-2}{2}$  $f(v_is_i) = 10i - 5, 1 \le i \le \frac{n-2}{2}$ 

$$f(s_i w_i) = 10i - 3, 1 \le i \le \frac{n-2}{2}$$
  
$$f(w_i y_i) = 10i - 2, 1 \le i \le \frac{n-2}{2}$$
  
$$f(y_i u_{2i+1}) = 10i - 1, 1 \le i \le \frac{n-2}{2}$$

Then the edge labels are distinct. Hence G is a Root Square Mean graph. The labeling pattern of  $S(A(Q_6))$  is shown below.



From case(1) and case(2),  $S(A(Q_n))$  is a Root Square Mean graph.

## **Reference:**

- [1] Gallian.J.A, 2012, A dynamic Survey of graph labeling. The electronic Journal of Combinatories .
- [2] Harary.F, 1988, Graph Theory, Narosa Publishing House Reading, New Delhi.
- [3] Sandhya.S.S, Somasundaram.S, Anusa.S, "Root Square Mean Labeling of Graphs" International Journal of Contemporary Mathematical Sciences, Vol.9, 2014, no.14, 667-676.
- [4] Sandhya.S.S, Somasundaram.S, Anusa.S, "Some Results on Root Square Mean Graphs" Communicated to "Journal of Scientific Research"
- [5] Sandhya.S.S, Somasundaram.S, Anusa.S, "Some More Results on Root Square Mean Graphs" Communicated to "Journal of Mathematics Research"
- [6] Sandhya.S.S, Somasundaram.S, Anusa.S, "Further Results on Root Square Mean Labeling" Communicated to "Bulletin of Pure and Applied Mathematics Sciences"
- [7] Sandhya.S.S, Somasundaram.S, Anusa.S, "Root Square Mean Labeling of Some Disconnected Graphs" communicated to International Journal of Mathematical Combinatorics.
- [8] Sandhya.S.S, Somasundaram.S, Anusa.S, "Root Square Mean Labeling of Some New Disconnected Graphs" International Journal of Mathematics Trends and Technology, volume 15 number 2, 2014. Page no: 85-92.
- [9] Sandhya.S.S, Somasundaram.S, Anusa.S, "Some New Results on Root Square Mean Labeling", Communicated to "International Journal of Mathematical Archive".
- [10] Sandhya.S.S, Somasundaram.S, Anusa.S, "Root Square Mean Labeling of Subdivision of Some Graphs" communicated to Discrete Mathematics.