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Abstract. 

 
 In this paper, we obtain the necessary and sufficient conditions on pair of 
weights ),( 10 ww  for the boundedness of the Hardy-Steklov operator 

dttf
xb

xa
)(

)(

)(  between the spaces )( 0wp
u  and )( 1wq

v  for non-negative 

functions f , where  <<1 qp . 
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1. Introduction 
  

 By a weight function u  on )(0,  we mean a non-negative locally integrable 
measurable function. We take ))(),((0,00 dxxu  MM  to be the set of all those 
functions which are measurable, non-negative and finite a.e. on )(0,  with respect to 
the measure dxxu )( . Then the distribution function uf*  of  0Mf  is given by  
 

.0,)(=)(
}>)(:)(0,{*  




dxxuf
xfxu  

 
For a measurable set E , by )(Eu  we mean dxxu

E
)( . 
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The non-increasing rearrangement *
uf  of f  is defined as  

0.},)(:{inf=)( *
*  ttftf uu   

Essentially, *1
* = uu ff   [3]. 

The weighted Lorentz spaces )(wq
v  are defined to be the collection of those 

members of ))(),((0,0 dxxvM  for which  
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 is finite. 

For 
1

=)(


p
q

x
p
qxw , the spaces we get are called two exponent Lorentz spaces, 

denoted as )(0,, qp
vL , consisting of  0Mf for which  

      



















=,)(sup

<<0,])([

=
*1/

0>

*/1
0

),(0,

qtft

q
t
dttft

q
p

f

v
p

t

q
v

p

qp
vL  

is finite.  For qp = , the spaces are reduced to Lebesgue spaces )(0,p
vL . Again, for 

1=v , the spaces )(wq
v  become )(wq , known as classical Lorentz spaces. Further, 

on taking 
1

=)(


p
q

xxw , we get the so called two exponent classical Lorentz spaces 
qpL , . The spaces ,)(wq may also be looked upon as )(wLq  for the functions *f  i.e., 

)(
*

)( =
wqLwq ff


. And, in case, f  is non-increasing, it is precisely )(wLq . In fact, 

each of the Lorentz spaces talked here, may be deduced from )(wq
v , q<0 . The 

spaces )(wq
v  have been considered for studying the boundedness of various 

operators. E.g., the boundedness of Hardy Littlewood maximal function on )(wq  
[6], and on qp

vL ,  [1]; the boundedness of Hardy operator on qp
vL ,  [5], and on )(wp

v  
by Carro and Soria [2] etc. 
 

In the present paper, we study the boundedness of Hardy-Steklov operator on 
weighted Lorentz spaces. In Section 2, we give some of the known results (from [2], 
[4] and [6]) which will be used in the subsequent Section 3, containing the main 
result. 
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2. Known Results 
 
Definition 1.  The Hardy-Steklov operator is defined as  
 

dttfxTf
xb

xa
)(=))((

)(

)(  

 
where the functions )(= xaa  and )(= xbb  are strictly increasing and differentiable on 

)(0, . Also, they satisfy  
 

 .<<0for )(<)(and=)(=)(0;=(0)=(0)  xxbxababa  
Clearly 1a  and 1b  exist, and are strictly increasing and differentiable as well, for the 
functions introduced in the definition of Hardy-Steklov operator. 

 
Definition 2.  A function f  is said to satisfy 2 -condition if )()(2 xCfxf    0>x , 
for some constant 0>C .  

 
Theorem A. )(wq

v
  is a quasi-norm if and only if dttwx )(0  satisfies 2 -condition. 

 
Notations.   

;)(=)(~,)(=)(
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).()))(((=)(),()))(((=)( 1111 ybybuyuyayauyu ba    

  
We consider now, a sequence Zkkm }{  defined as follows: 
Let 0>m  be fix, set mm =0 , and  
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Obviously )(=)( 1 kk mbma      Zk . 
 
Lemma 1.  Fix 0>m  and define Zkkm }{  as above. Then  

     . 0=limand; =lim; for< 1 k
k

k
k

kk mmkmm


 Z  

  
Lemma 2.  Let qp  . Then a weight 0w  satisfies that for every Rkkt }{ ,  
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if and only if, for every collection of functions kkf }{  in )( 0wp
u  with pairwise 

disjoint support, there exists a constant 0>C  such that  

         .
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k
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q

wp
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

   

 
A trivial choice of weights for which (2) holds is to take 0w  to be a non-decreasing 
weight [2]. 
 
 
 
Theorem B. (Sawyer’s Duality Principle) Let )(,<<1 xvp   and )(xg  are non-
negative functions on [[0,  with v  locally integrable. Then  
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where the symbol   means that the ratio of left and right hand sides is bounded 
between two positive constants depending only on p  (and not on v  or g ). 
 
 
3. Main Result 
 
Theorem.  Let  <<1 qp , )(< xax  for <<0 x , 21 W  and 0w  be satisfying 

the condition (2). Then )()(: 10 wwT q
v

p
u   , i.e., the inequality  
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 where  



Boundedness of Hardy-Steklov operator on weighted Lorentz Spaces )(wp
u  271 

 

  














.)(=)(when)(~

)(=)(when
)(

=)(

1)(11

1)(1
1

dsswzWyU

dsswzW
yU

y
az

xa

bz

xa

  

  
Proof. )(  (Sufficiency part) 

Fix 0>m  and define Zkkm }{  as in (1). Denote ),(= 1kkk mmE , and 
)(=),(= kkkk mbbmaa . Then for kEx , )(<=<)( 1 xbbaxa kk . Now since 1W  

satisfies 2 -condition, we have   
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 which is a sufficient condition for the inequality  
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 to hold.  Thus, in view of (6), (7) and Lemma 2, we have  
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Again, on taking kmx =  in (4), we obtain the expressions conjugate to (6) and (7). 
And then, further, using Lemma 2, we get  
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 The inequality (3), now follows from (8) and (9). 
 

)(  (Necessary part) 
It can be easily verified that if the condition (2) is true for a weight 0w , then so is 

this for ))(),((00 =~
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Taking supremum over all those dssf
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And, now using Sawyer’s duality principle, the condition (4) holds with 

dsswzW bz

xa
)(=)( 1)(1  .  

 
Remark.  It is known that, in particular, for the two exponent classical Lorentz 
spaces the following embeddings hold when qp  :  

        .,,,1  pqppp LLLL   
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