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Abstract.

In this paper, we obtain the necessary and sufficient conditions on pair of
weights  (w,,w;) for the boundedness of the Hardy-Steklov operator

[Lf(tdt between the spaces A%(w,) and A%(w) for non-negative

functions f,where 1< p<q<o.
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1. Introduction

By a weight function u on (0,.0) we mean a non-negative locally integrable

measurable function. We take Mg =M{((0,%),u(x)dx) to be the set of all those
functions which are measurable, non-negative and finite a.e. on (0,0) with respect to

the measure u(x)dx. Then the distribution function f. of f eMj is given by
f. (A)= J‘{XE(O’OO):”XM}U(X)dx, 220,

For a measurable set E, by u(E) we mean jEu(x)dx.



268 Arun Pal Singh

The non-increasing rearrangement f, of f is defined as

fy ) =inf{A: £, (2)<t}, t>0.
Essentially, f.' = f, [3].

The weighted Lorentz spaces Af(w) are defined to be the collection of those
members of Mg ((0,),v(x)dx) for which

[ ow(xydx, 0<g<ow

||f||A‘3,(w) = t T q =
sup[fow(x)dxj f, (),

t>0
is finite.
9,
For w(x) :%xp , the spaces we get are called two exponent Lorentz spaces,

denoted as LP9(0,0), consisting of f €M, for which

FRwrgors,  o<q<w

” f ||L\5)’q(0,oo) =

supt™® £, (1),
t>0

is finite. For p =g, the spaces are reduced to Lebesgue spaces LY (0,0). Again, for

v =1, the spaces A’ (w) become A%(w), known as classical Lorentz spaces. Further,
a4

on taking w(x) =x" , we get the so called two exponent classical Lorentz spaces

LP9. The spaces A?(w), may also be looked upon as L%(w) for the functions f i.e.,

f

*

_ . . y o . q
||f||Aq(W) —‘ g’ And, in case, f is non-increasing, it is precisely L%(w). In fact,

each of the Lorentz spaces talked here, may be deduced from A% (w), 0<g<o. The
spaces A} (w) have been considered for studying the boundedness of various
operators. E.g., the boundedness of Hardy Littlewood maximal function on A%(w)

[6], and on LP9 [1]; the boundedness of Hardy operator on L)"* [5], and on AP (w)
by Carro and Soria [2] etc.

In the present paper, we study the boundedness of Hardy-Steklov operator on
weighted Lorentz spaces. In Section 2, we give some of the known results (from [2],
[4] and [6]) which will be used in the subsequent Section 3, containing the main
result.
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2. Known Results

Definition 1. The Hardy-Steklov operator is defined as

=

o FO

where the functions a = a(x) and b = b(x) are strictly increasing and differentiable on
(0,0) . Also, they satisfy

a(0)=b(0)=0; a(w)=Db(wx)=0 and a(x)<b(x)forO0<x<oo.

Clearly a™ and b exist, and are strictly increasing and differentiable as well, for the
functions introduced in the definition of Hardy-Steklov operator.

Definition 2. A function f is said to satisfy A,-condition if f(2x)<Cf(x) Vv x>0,
for some constant C >0.

Theorem A. ||-||A%(W) is a quasi-norm if and only if [w(t)dt satisfies A,-condition.

Notations.
v b(x)
W)= [} wdt, W(y)= [ wit)ds

ut(y) =u@ (@™ (Y), u’(y)=u(y))OT)(Y).

We consider now, a sequence {m, },., defined as follows:
Let m>0 be fix, set my =m, and

mk+1
my

al(b(m,)), k> o} o

b@(m.). k<0,

Obviously a(m, ;) =b(m,) V keZ.
Lemma 1. Fix m>0 and define {m,},_., as above. Then
m,<m,, for keZ; |imm, =c; and |im m=0.

kK —o0 K——o0

Lemma 2. Let p<q. Then a weight w, satisfies that for every {t,}, cR",

p/q
(%U;kwo (s)ds)qu <C '[oztkwo (s)ds, (2)
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if and only if, for every collection of functions {f.}, in Al(w,) with pairwise

disjoint support, there exists a constant C > 0 such that

q

>f,

q
o, <cs

Al (wp)

Afl (wp)

A trivial choice of weights for which (2) holds is to take w, to be a non-decreasing
weight [2].

Theorem B. (Sawyer’s Duality Principle) Let 1< p<oo,v(x) and g(x) are non-
negative functions on [0, with v locally integrable. Then

[ (099(0dx
up
Lo ([ 7P GOv () dx) P

) (_':O(j(’)‘g )p' UOXV)_ ’ V(X)dxjup' n ( J‘;O g J( J-;ov)—l/p

where the symbol ~ means that the ratio of left and right hand sides is bounded
between two positive constants depending only on p (and noton v or g).

3. Main Result

Theorem. Let 1< p<qg<o, x<a(x) for 0<x<owo, W, €A, and w, be satisfying
the condition (2). Then T : AP (wy) — A%(w,), i.e., the inequality
1/p

d 1/q
{j;(j:((:))f(t)dt)v Wl(x)dxj sc(jffu*p (x)wo(x)dxj 3)

holds ifand only if v f >0
b(x) - P’ .
sup [0 [ a0t ) Woly) ™ wo(y)cly
a(x)<y<b(x)

+ (y —a(x))W, (b(x)) P TW, (@ (Y)Y < oo 4)
where
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Ui(y) when W,(z) :LZ(X)W{’ (s)ds
@(y) =

U,(y) when W,(z) :J':(X)wf(s)ds.
Proof. (<) (Sufficiency part)
Fix m>0 and define {m}._. as in (1). Denote E, =(m,,m.,), and

a, =a(my),b, =b(m,). Then for xeE,, a(x)<a,, =b, <b(x). Now since W,
satisfies A,-condition, we have

( [ °°( [ (t)dt)*qw (x)dellq
0\ Jax) v 1

* 1/q
(j [Z){Ek (x)j( RICEEP (9] (X)f(t)dt) qwl(x)de

X *q 1/q
<C ( Eo(éz’fEk (x) L(kx)f(t)oltju wl(x)de

12

1/q
(J. ( > ZEk (X)J. f(t)dtj Wl(x)dx] . (5

11 |

Now notice that, for x = m,_; the condition (4) becomes

-p
Sup [.[;k+1(jak 1(Z(ak+1 y)u_l) (t)dt) (j;lk+1W0(t)dtj WO(y)dy

ak+1<Y<bki1 K+l

byt UL B
- [wat) | [F o] <o @

which is a sufficient condition for the inequality

- 1/
[jbk”(jy f(t)dtjvqwlb(y)dyj qsc(j Ky (x)wo(x)dlelp )

ak+1\ Yak+1
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to hold. Thus, in view of (6), (7) and Lemma 2, we have

1/q
A0 i
b+
- (k%zj.a:ﬂl (
/
< c(kgz( jkkll " ()W, (x)dx)q pj

o 1/q
[ i) wf(y)dy}

ak+1

1/q

C
kez

0 ap |
2 J-(fk)u (X)WO(X)de J for fk:)((alk+1ybk+1)f

IA

/
o[zt (x)wo(x)dlep
c(j fr (x)wo(x)dx)llp. (8)

Again, on taking x =m, in (4), we obtain the expressions conjugate to (6) and (7).
And then, further, using Lemma 2, we get

X 1/q
_ Mg 1 bk
'“[EJmk U( )f(t)dt) wl(x)dx]
*(

:(@Jf:(fikf@dtl

1/q
< c{ » ( abkk £ (x)wo(x)dx]q/p]

kez

1/q
wy (y)dyJ

<o(fy fu*"(x)wo(x)dxjﬂp. ©)

The inequality (3), now follows from (8) and (9).

(=) (Necessary part)

It can be easily verified that if the condition (2) is true for a weight w,, then so is
this for Wy =Wox(apone: X€(0,0). So, let feAf(W,), Then, for every
t e[y,b(x)], we have
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Iay(x)f (8)ds <T ((ag9.y PO

Let n < jay(x)f (s)ds, then
b(x),
[, )8 < IT (tgag ) DI, ().

Thus,

a(x) X

1/q
Oy (s)ds
< U(J-Xy wl(z)dzj

T )} 1q
SnU[ (x(a(x),y) )]V(U)Wl(Z)dZ)

X 1/q
: SZEE ZU{Tma(x),y) )k, (z)Wl(S)de
= [T (Fxapom)
<[T (o)
<C[[fp ey

Now, on taking the supremum over all 77<Iay(x)f(s)ds, and using the Sawyer’s

b(x Vg 1, b(x 1/
77( )v(s)ds a(s)dsJ :n[J-a i )V(S)dS)Wl(Z)dZ]

AT ()

AJ ()

duality principle, we obtain the condition (4) with W, (z) = J':(X)wf‘(s)ds :
Again for every t e[a(x), y], we have

[} 1 (9)ds <T (xgy 00 O,

and therefore, on taking n < I:(X)f (s)ds, we get

fooa/ @8 = [ (988 = T oy T, 00

1/q
[ V(s)ds 1Y w(s)ds
n(Li‘i? b(s)dsj SU[IXa(X) Wl(z)dzj

Thus
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1/
< sup z( [ R0 Dy (Z)wl(s)dsj " <ct [p (o).

>0

Taking supremum over all those 7 < J';(X)f (s)ds, we have

Jy(x) U1 (s)ds b 1
sup sup oo W (s)ds| <oo.
a(x)<y<b(x) ” ”Aﬁ(w ) 200

And, now using Sawyer’s duality principle, the condition (4) holds with
W, (z) = j:(x)wf (s)ds .

Remark. It is known that, in particular, for the two exponent classical Lorentz
spaces the following embeddings hold when p<q:

[Ple.. . clPc...clPc.. . cLP™.
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