Inequalities Among Related Pairs Of Lucas Numbers

Sanjay Harne¹, Bijender Singh², Gurbeer Kaur Khanuja³, Manjeet Singh Teeth³

¹Government Holkar Science College, Indore (M.P.), India. ²School of Studies in Mathematics, Vikram University, Ujjain (M.P.), India ³M.B.Khalsa College, Indore (M.P.), India

ABSTRACT

In this paper we consider Lucas inequalities and relate them through the sequence $\{u_r\}_{r=0}^n$ defined by $u_r = L_r L_{n+1-r}$ where n is a fixed natural number and L_1, L_2, L_3, \ldots are the ordinary Lucas numbers.

Mathematics Subject Classification: 11B39, 11B37.

KEYWORDS: Fibonacci sequence, Lucas sequence.

1. INTRODUCTION

"Fibonacci inequalities" have been studied in a variety of contexts. Atanassov [3] considered the Fibonacci inequalities and relate them through the sequence $\{m_r\}_{r=0}^n$ defined by $m_r = F_r F_{n+1-r}$ where n is a fixed natural number and $F_1, F_2, F_3, ...$ are ordinary Fibonacci numbers as defined in [4]. Here we consider the Lucas inequalities and relate them through the sequence $\{u_r\}_{r=0}^n$ defined by $u_r = L_r L_{n+1-r}$ where n is a fixed natural number and $L_1, L_2, L_3, ...$ are the ordinary Lucas numbers [4].

2. MAIN RESULT

Theorem: For every natural number k, the following inequalities for the elements of the sequence $\{u_r\}_{r=1}^n$ are valid:

(a) if n = 4k, then

Proof: We shall use induction method to prove the required results.

We shall prove the case (a) and other cases can be proved in a similar manner. For k = 1, $L_1L_4 = 7 < L_3L_2 = 12$

the result is true.

So, by induction method assume that the case (a) is true for some $k \ge 1$ and then prove it for k+1.

First, we see that

 $L_1 L_{4k+4} - L_3 L_{4k+2} = L_{4k+1} - 2L_{4k+2} < 0$

This shows that $L_1L_{4k+4} < L_3L_{4k+2}$

i.e., the inequality $L_{2i-1}L_{4k-2i+6} < L_{2i+1}L_{4k-2i+4}$...(2.1) is valid for i = 1.

Let us assume that for some $i, 1 \le i \le k$, the inequality (2.1) is true. Then we must prove that

the inequality $L_{2i+1}L_{4k-2i+4} < L_{2i+3}L_{4k-2i+2}$...(2.2) is also true. But, $L_{2i+1}L_{4k-2i+4} - L_{2i+3}L_{4k-2i+2}$ $= L_{2i+1}(L_{4k-2i+3} + L_{4k-2i+2}) - (L_{2i+2} + L_{2i+1})L_{4k-2i+2}$

 $= L_{2i+1}L_{4k-2i+3} - L_{2i+2}L_{4k-2i+2} < 0$

By the inductive assumption of (d). Therefore, inequality (2.2) is true and hence (a) is true.

3. SUPPLEMENT RESULT

With the help of extremal problems discussed by Atanassov in [2], we can write the following:

Corollary: For every natural number n the maximal and minimal element of the sequence $\{u_r\}_{r=0}^n$ is L_0L_{n+1} and L_1L_n respectively.

4.CONCLUSION

This paper discuss the Lucas inequalities through the sequence $\{u_r\}_{r=0}^n$ and its maximal and minimal element. The new results can be obtained by defining a sequence in different manner.

5. REFERENCES

- 1. Alameddine A. F., "Bounds on the Fibonacci Number of a Maximal Outerplanar Graph", The Fibonacci Quarterly 36.3(1998): 206-10.
- 2. Atanassov K. T., "One extremal Problem", Bulletin of Number Theory and Related Topics 8.3 (1984): 6-12.
- 3. Atanassov K. T., "Inequalities among related pairs of Fibonacci Numbers", The Fibonacci Quarterly(Feb 2003): 20-22.
- 4. Hoggatt V. E., Jr., "Fibonacci and Lucas Numbers", p.59. Boston: Houghton-Mifflin, 1969.

Sanjay Harne et al