Extreme Edge-to-vertex Geodesic Graphs

S. Sujitha

Department of Mathematics, Holy Cross College(Autonomous), Nagercoil- 629004, India. email : sujivenkit@gmail.com

J. John

Department of Mathematics, Government College of Engineering, Tirunelveli - 627007, India. email : johnramesh1971@yahoo.co.in

A.Vijayan

Department of Mathematics, N.M Christian College, Marthandam - 629165, India. email : vijayan2020@yahoo.in

Abstract

For a connected graph G = (V, E), an edge-to-vertex geodetic basis S in a connected graph G is called an extreme edge-to-vertex geodetic basis if $S \subseteq S_e$, where S_e denotes the set of all extreme edges of G. A graph G is said to be an extreme edge-to-vertex geodesic graph if G contains at least one extreme edge-to-vertex geodetic basis. An edge-to-vertex geodetic basis S in a connected graph G is called a perfect extreme edge-to-vertex geodetic basis if $S = S_e$. A graph G is said to be a perfect extreme edge-to-vertex geodesic graph if G contains a perfect extreme edge-to-vertex geodesic graph if G contains a perfect extreme edge-to-vertex geodesic for G. Extreme edge-to-vertex geodetic basis consisting of all the extreme edges of G. Extreme edge-to-vertex geodesic graph G of size q with edge-to-vertex geodetic number q or q - 1 or q - 2 are characterized. It is shown that for each triple, d, k, q of integers with $2 \le k \le q - d + 2$, $d \ge 4$, and q - d - k + 1 > 0, there exists a perfect extreme edge-to-vertex geodesic graph G of size q with diam G = d and $g_{ev}(G) = k$.

Keywords: distance, geodesic, edge-to-vertex geodetic basis, edge-to-vertex geodetic number.

AMS Subject Classification: 05C12.

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The *order* and *size* of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1, 4]. A subset $M \subset E(G)$ is called a matching of G if no pair of edges in M are incident. The maximum size of such M is called the matching number of G and is denoted by $\propto'(G)$. An edge covering of G is a subset $K \subset E(G)$ such that each vertex of G is end of some edge in K. The number of edges in a minimum edge covering of G, denoted by $\beta'(G)$ is the edge covering number of G. For vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest u - v path in G. An u - v path of length d(u, v) is called an u - v geodesic. For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices is the radius, rad G and the maximum eccentricity is the diameter, diam G of G. A geodetic set of G is a set S of vertices such that every vertex of G is contained in a geodesic joining some pair of vertices of S. The geodetic number g(G) of G is the minimum cardinality of its geodetic sets and any geodetic set of cardinality g(G) is a minimum geodetic set or simply a g-set of G. The geodetic number of a graph was introduced in [1] and further studied in [2,5]. It was shown in [5] that determining the geodetic number of a graph is an NP-hard problem. $N(v) = \{ u \in V(G) : uv \in E(G) \}$ is called the neighborhood of the vertex v in G. A vertex v is an *extreme vertex* of a graph G if the subgraph induced by its neighbors is complete. The number of extreme vertices in G is its *extreme order* ex(G). A graph G is said to be an *extreme geodesic graph* if g(G) = ex(G), that is if G has a unique minimum geodetic set consisting of the extreme vertices of G. The concept of extreme geodesic graphs is introduced in [3]. For subsets A and B of V(G), the distance d(A, B) is defined as $d(A, B) = \min\{d(x, y) : x \in A, y \in B\}$. An u - v path of length d(A, B) is called an A - B geodesic joining the sets A, B, where $u \in A$ and v $\in B$. A vertex x is said to lie on an A - B geodesic if x is a vertex of an A - Bgeodesic. For $A = \{u, v\}$ and $B = \{z, w\}$ with uv and zw edges, we write an A - Bgeodesic as uv - zw geodesic and d(A, B) as d(uv, zw). A set $S \subset E(G)$ is called an edge-to-vertex geodetic set if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic number $g_{ev}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is an *edge-to-vertex geodetic basis* of G. The edge-to-vertex geodetic number of a graph was introduced in [9] and further studied in [6,8]. Since every edge covering of G is an edge-to-vertex geodetic set of G, we have $g_{ev}(G) \leq \beta'(G)$. For an edge $e = uv \in E(G)$, $N(e) = N(u) \cup N(v)$. For a set $S \subseteq E(G), N(S) = \{ N(e) : e \in S \}$. An edge e of a graph G is called an *extreme edge* of G if one of its ends is an extreme vertex of G. Let S_e denotes the set of all extreme edges of G, E(e) denotes the number of extreme edges of G, and c(G) denotes the length of the longest cycle in G. A double star is a tree with diameter three. A *caterpillar* is a tree or more, for which the removal of all end-vertices leaves a path. For the graph G given in Figure 1.1 with $A = \{v_4, v_5\}$ and Example 1.1. $B = \{v_1, v_2, v_7\}$, the paths $P : v_5, v_6, v_7$ and $Q : v_4, v_3, v_2$ are the only two A - B

geodesics so that d(A, B) = 2.

Example 1.2. For the graph *G* given in Figure 1.2, the three $v_1v_6 - v_3v_4$ geodesics are $P : v_1, v_2, v_3$; $Q : v_1, v_2, v_4$; and $R : v_6, v_5, v_4$ with each of length 2 so that $d(v_1v_6, v_3v_4) = 2$. Since the vertices v_2 and v_5 lie on the $v_1v_6 - v_3v_4$ geodesics *P* and *R* respectively, $S = \{v_1v_6, v_3v_4\}$ is an edge-to-vertex geodetic basis of *G* so that $g_{ev}(G) = 2$.

Figure 1.2

The following theorems are used in sequel.

Theorem 1.1.[9] If v is an extreme vertex of a connected graph G, then every edge-to-vertex geodetic set contains at least one extreme edge is incident with v.

Theorem 1.2.[9] For any connected graph G, $g_{ev}(G) = q$ if and only if G is a star.

Theorem 1.3. [9] For any connected graph G with size $q \ge 3$, $g_{ev}(G) = q - 1$ if and only if G is either a double star or C_3 .

Theorem 1.4.[9] For a non-trivial tree *T* with *k* end-vertices, $g_{ev}(T) = k$.

Theorem 1.5. [9] For any graph *G* of order *p*, $g_{ev}(G) \le p - \alpha'(G)$.

2. Extreme Edge-to- Vertex Geodesic Graphs

Definition 2.1. An edge-to-vertex geodetic basis *S* in a connected graph *G* is called an *extreme edge-to-vertex geodetic basis* if $S \subseteq S_e$. A graph *G* is said to be an *extreme edge-to-vertex geodesic graph* if *G* contains at least one extreme edge-to-vertex geodetic basis. An edge-to-vertex geodetic basis *S* in a connected graph *G* is called a *perfect extreme edge-to-vertex geodetic basis* if $S = S_e$. A graph *G* is said to be a perfect extreme edge-to-vertex geodesic graph if G contains a perfect extreme edge-to-vertex geodetic basis, that is, if G has an edge-to-vertex geodetic basis consisting of all the extreme edges of G.

Example 2.2. For the graph *G* given in Figure 2.1(a), $S_e = \{v_1v_2, v_1v_6, v_3v_4, v_4v_5\}$. The set $S_1 = \{v_1v_2, v_4v_5\}$ is an edge-to-vertex geodetic basis of *G*. Since $S_1 \subseteq S_e$, S_1 is an extreme edge-to-vertex geodetic basis of *G*. Therefore, *G* is an extreme edge-to-vertex geodetic basis of *G* so that $g_{ev}(G) = 3 = E(e)$. Therefore *G* is a perfect extreme edge-to-vertex geodesic graph.

Remark 2.3. For an extreme edge-to-vertex geodesic graph *G*, there can be more than one extreme edge-to-vertex geodetic basis. For the graph *G* given in Figure 2.1(a), $S_2 = \{v_1v_6, v_3v_4\}$ is an extreme edge-to-vertex geodetic basis.

For the complete graph $G = K_p (p \ge 3)$, every edge is an extreme edge. In [9], it is proved that, $g_{ev}(K_p)$ is either p/2 or (p+1)/2. So K_p is an extreme edge-to-vertex geodesic graph. Since $g_{ev}(K_p) \ne E(e)$, K_p is not a perfect extreme edge-to-vertex geodesic graph. A nontrivial tree T has k extreme edges , namely its end edges and so E(e) = k. Since $g_{ev}(G) = k$, it follows that T is a perfect extreme edge-to-vertex geodesic graph. Obviously, a cycle $C_p(p\ge 4)$ has no extreme edges, a cycle is not an extreme edge-to-vertex geodesic graph. For any complete bipartite graph $G = K_{m,n}(2\le m \le n)$, it is easily to see that no edge is an extreme edge and so G is not an extreme edge-to-vertex geodesic graph.

Theorem 2.4. Let *G* be an extreme edge-to-vertex geodesic graph of size $q \ge 2$ such that d(e, f) = 0 or 1 for every $e, f \in E(G)$. Then $g_{ev}(G) = \beta'(G)$.

Proof. Let *S* be an edge-to-vertex geodetic basis of *G* and $v \in V(G)$. We claim that *v* is incident with an edge of *S*. If not, then by Theorem 1.1, *v* is not an extreme vertex of *G*. If $v \notin N(S)$, then *v* lies on a *xu*- *yw* geodesic, where *xu*, *yw* $\in S$. Then it follows that $d(xu, yw) \ge 2$, which is a contradiction. Therefore $v \in N(S)$. Since *S* is an edge-to-vertex geodetic basis of *G* and since d(e, f) = 0 or 1 for every $e, f \in E(G)$, the only

geodesics containing *v* are *xvy* and *xyvw*, where *xv*, *vy*, *xy*, *vw* \in *S*. This contradicts the fact that *v* is not incident with an edge of *S*. Therefore *v* is incident with an edge of *S*. Which implies that *S* is an edge covering of *G* and so $\beta'(G) \leq g_{ev}(G)$. Hence $g_{ev}(G) = \beta'(G)$.

Remark 2.5. The converse of the Theorem 2.4 is not true. For the extreme edge-to-vertex geodesic graph *G* given in Figure 2.2, $g_{ev}(G) = \beta'(G) = 6$ and $d(v_1v_2, v_8v_9) \ge 2$.

Figure 2.2

Theorem 2.6. Let *G* be a connected graph of size $q \ge 2$. Then *G* is a perfect extreme edge-to-vertex geodesic graph with edge-to-vertex geodetic number *q* if and only if *G* = $K_{1,q}$.

Proof. This follows from Theorem 1.2.

Theorem 2.7. Let *G* be a connected graph of size $q \ge 3$. Then *G* is an extreme edgeto -vertex geodesic graph with edge-to-vertex geodetic number q - 1 if and only if *G* is either C_3 or a double star.

Proof. This follows from Theorem 1.3

Theorem 2.8. If *G* is an extreme edge-to-vertex geodesic graph of size $q \ge 4$ and not a tree such that $g_{ev}(G) = q - 2$, then *G* is unicyclic and c(G) = 3.

Proof. Let *G* have more than one cycle. Then $q \ge p + 1$ and so $p - 1 \le q - 2 = g_{ev}(G) \le p - \alpha'(G)$, by Theorem 1.5. Hence $\alpha'(G) = 1$ and so *G* must be either a star or the cycle C_3 , a contradiction. Therefore *G* is unicyclic. Then it follows from Theorem 1.5, $\alpha'(G) \le 2$. Let C_k be the unique cycle of *G*. We have $k \le 5$ since otherwise $\alpha'(G) \ge \alpha'(C_k) \ge 3$. Therefore we have the following three cases:

Case 1. k = 5. Then G cannot have any other vertices since otherwise $\propto'(G) \ge 3$. Therefore $G = C_5$ which is not an extreme edge-to-vertex geodesic graph, which is a contradiction.

Case 2. k = 4. If $G = C_4$, then *G* is not an extreme edge-to-vertex geodesic graph. So let $G \neq C_4$. Because $\propto'(G) \leq 2$, only one of the vertices of C_4 has degree more than 2. Therefore *G* is not an extreme edge-to-vertex geodesic graph, which is a contradiction. Therefore c(G) = 3

Theorem 2.9. Let *G* be a connected graph of size $q \ge 4$. Then *G* is an extreme edge-to-vertex geodesic graph with edge-to-vertex geodetic number q-2 if and only if $G = K_{1,q} - 1 + e$ or caterpillar with diameter 4 or the graph *G* given in Figure 2.3.

Figure 2.3

Proof. For a caterpillar of diameter 4, the result follows from Theorem 1.4. For $G = K_{1,q} - 1 + e$, it follows from Theorem 1.1, that the set of all end edges of G together with e forms an edge -to-vertex geodetic basis so that $g_{ev}(G) = q - 2$. Further it is easily verified that $g_{ev}(G) = q - 2$ for the graph given in Figure 2.3.

Conversely let *G* be an extreme edge-to-vertex geodesic graph such that $g_{ev}(G) = q - 2$. Then by Theorem 2.8, *G* is either a tree or unicyclic. Let *G* be a tree. Then it follows from Theorem 1.4 that *G* has just two internal edges and hence *G* is a caterpillar. Thus in this case the graph reduces to a caterpillar of diameter 4. Now, let *G* be an unicyclic. By Theorem 2.8, c(G) = 3. Since $g_{ev}(C_3) = 2 = q - 1$, we have $G \neq C_3$. Let $V(C_3) = \{v_1, v_2, v_3\}$. We note that if $u \in V(G) - V(C_3)$, then deg u = 1. Otherwise, there are $u_1, u_2 \in V(G) - V(C_3)$ such that u_1 is adjacent to both u_2 and v_1 , say. Then it is easily seen that $E(G) - \{u_1v_1, v_1v_2, v_1v_3\}$ is an edge-to-vertex geodetic set, which implies that $g_{ev}(G) \leq q - 3$. Further at least one of v_i 's should be of degree 2. Otherwise $E(G) - E(C_3)$ is an edge-to-vertex geodetic set, which is impossible. Thus *G* should be either $K_{1,q} - 1 + e$ or a graph like Figure 2.3.

Theorem A. Let G be a connected graph of size q and diameter d, then $g_{ev}(G) \le q - q$

If G is a perfect extreme edge-to-vertex geodesic graph, then we have the following result.

Theorem 2.10. If *G* is a perfect extreme edge-to-vertex geodesic graph of size *q* and diameter *d*, then $E(e) \le q \cdot d + 2$.

Proof. Since *G* is a perfect extreme edge-to-vertex geodesic graph, we have $g_{ev}(G) = E(e)$, now the result follows from Theorem *A*.

The following theorem characterize for trees.

Theorem 2.11. For any tree T, $g_{ev}(T) = q - d + 2 = E(e)$ if and only if T is a caterpillar.

Proof. Let $P: v_0, v_1, ..., v_{d-1}, v_d = v$ be a diametral path of length d. Let $e_i = v_{i-1}v_i$ ($1 \le i \le d$) be the edges of the diametral path P. Let k be the number of end edges of T and l be the number of internal edges of T other than $e_i (2 \le i \le d - 1)$. Then d - 2 + l + k = q. By Theorem 1.4, $g_{ev}(T) = k = E(e)$ and so $g_{ev}(T) = q - d + 2 - l$. Hence $g_{ev}(T) = q - d + 2 = E(e)$ if and only if l = 0, if and only if all internal vertices of T lie on the diametral path P, if and only if T is a caterpillar.

In the following we give some realization results on perfect extreme edge-to-

d + 2.

vertex geodesic graphs.

Theorem 2.12. For every pair k, q of integers with $2 \le k \le q$, there exists a perfect extreme edge-to-vertex geodesic graph of size q with edge-to-vertex geodetic number q.

Proof. For k = q, the result follows from Theorem 2.6. Also, for each pair of integers with $2 \le k < q$, there exists a tree of size q with k end edges. Hence the result follows from Theorem 1.4.

Theorem 2.13. For each triple, *d*, *k*, *q* of integers with $2 \le k \le q - d + 2$, $d \ge 4$, and q - d - k + 1 > 0, there exists a perfect extreme edge-to-vertex geodesic graph *G* of size *q* with *diam G* = *d* and $g_{ev}(G) = k$.

Proof. Let $2 \le k = q - d + 2$. Let *G* be the graph obtained from the path *P* of length *d* by adding q - d new vertices to *P* and joining them to any cut-vertex of *P*. Then *G* is a tree of size *q* and *diam* G = d. By Theorem 1.4, $g_{ev}(G) = q - d + 2 = k$. Now, let $2 \le k < q - d + 2$.

Case 1. q - d - k + 1 is even. Let $(q - d - k + 1) \ge 2$. Let $n = \frac{(q - d - k + 1)}{2}$. Then $n \ge 1$. Let $P_d: u_0, u_1, ..., u_d$ be a path of length d. Add new vertices $v_1, v_2, ..., v_{k-2}$ and $w_1, w_2, ..., w_n$ and join each $v_i (1 \le i \le k - 2)$ with u_1 and also join each $w_i (1 \le i \le n)$ with u_1 and u_3 in P_d . Now, join w_1 with u_2 and we obtain the graph G in Figure 2.4(a). Then G has size q and diameter d. By Theorem 1.1, all the end-edges $u_1v_i (1 \le i \le k - 2)$, u_0u_1 and $u_{d-1}u_d$ lie in every edge-to-vertex geodetic set of G. Let $S = \{u_1v_1, u_1v_2, ..., u_1v_{k-2}, u_1u_0, u_{d-1}u_d\}$ be the set of all end-edges of G. Then it is clear that S is an extreme edge-to-vertex geodetic set of G and so $g_{ev}(G) = k$. Therefore G is a perfect extreme edge-to-vertex geodesic graph.

Case 2. q - d - k + 1 is odd. Let $q - d - k + 1 \ge 5$. Let m = (q - d - k)/2. Then $m \ge 2$. Let $P_d: u_0, u_1, ..., u_d$ be a path of length d. Add new vertices $v_1, v_2, ..., v_{k-2}$ and $w_1, w_2, ..., w_m$ and join each $v_i (1 \le i \le k - 2)$ with u_1 and also join each $w_i (1 \le i \le m)$ with u_1 and u_3 in P_d . Now join w_1 and w_2 with u_2 and we obtain the graph G in Figure 2.4(*b*). Then G has size q and diameter d. Now, as in Case 1, $S = \{u_1v_1, u_1v_2, ..., u_1v_{k-2}, u_0u_1, u_{d-1}u_d\}$ is an extreme edge-to-vertex geodetic set of G so that $g_{ev}(G) = k$. Therefore G is a perfect extreme edge-to-vertex geodesic graph.

Let q - d - k + 1 = 1. Let $P_d : u_0, u_1, ..., u_d$ be a path of length d. Add new vertices $v_1, v_2, ..., v_{k-2}$ and w_1 and join each $v_i (1 \le i \le k - 2)$ with u_1 and also join w_1 with u_1 and u_3 in P_d , there by obtaining the graph G in Figure 2.4(c). Then the graph is of size q and diameter d. Now, as in Case 1, $S = \{u_1v_1, u_1v_2, ..., u_1v_{k-2}, u_0u_1, u_{d-1}u_d\}$ is an extreme edge-to-vertex geodetic set of G so that $g_{ev}(G) = k$. Therefore G is a perfect extreme edge-to-vertex geodesic graph.

Figure 2.4(c)

Now, let q - d - k + 1 = 3. Let $P_d : u_0, u_1, ..., u_d$ be a path of length d. Add new vertices $v_1, v_2, v_3, ..., v_{k-2}, w_1$ and w_2 and join each v_i $(1 \le i \le k - 2)$ with u_1 and also join w_1 and w_2 with u_1 and u_3 and obtain the graph G in Figure 2.4(d). Then G has size q and diameter d. Now, as in Case 1, $S = \{u_1v_1, u_1v_2, ..., u_1v_{k-2}, u_0u_1, u_{d-1}u_d\}$ is an extreme edge-to-vertex geodetic set of G so that $g_{ev}(G) = k$. Therefore G is a perfect extreme edge-to-vertex geodesic graph.

Figure 2.4(d)

For every connected graph, $rad G \le diam G \le 2 \ rad G$. Ostrand[7] showed that every two positive integers *a* and *b* with $a \le b \le 2a$ are realizable as the radius and diameter, respectively, of some connected graph. Now, Ostrand's theorem can be extended to extreme to edge-to-vertex geodesic graphs.

Theorem 2.14. For positive integers *r*, *d* and $l \ge 3$ with $r < d \le 2r$, there exists a perfect extreme edge-to-vertex geodesic graph *G* with *rad* G = r, *diam* G = d and $g_{ev} = l = E(e)$.

Proof. When r = 1, let $G = K_1$, $_l$. Then d = 2 and by Theorem 2.6, $g_{ev}(G) = l$ and G is a perfect extreme edge-to-vertex geodesic graph.. Now, let $r \ge 2$. Construct a graph Gwith the desired properties as follows. Let $C_{2r}: v_1, v_2, ..., v_{2r}, v_1$ be a cycle of order 2rand let $P_{d-r+1}: u_0, u_1, u_2, ..., u_{d-r}$ be a path of order d - r + 1. Let H be the graph obtained from C_{2r} and P_{d-r+1} by identifying v_1 in C_{2r} and u_0 in P_{d-r+1} . Now, add (l-3)new vertices $w_1, w_2, ..., w_{l-3}$ to H and join each vertex w_i $(1 \le i \le l-3)$ to the vertex u_{d-r-1} and join the vertices v_r and v_{r+2} and obtain the graph G of Figure 2.5. Then radG = r and diam G = d. Let $S_e = \{v_r v_{r+1}, v_{r+1} v_{r+2}, u_{d-r-1} u_{d-r}, u_{d-r-1} w_1, u_{d-r-1} w_2, ..., u_{d-r-1} w_{l-3}\}$ be the set of l extreme edges of G. Let $S_1 = S_e - \{v_r v_{r+1}\}$ and $S_2 = S_e - \{v_r + 1 v_{r+2}\}$. Then by Theorem 1.1, either S_1 or S_2 is a subset of every extreme edge-to-vertex geodetic set of G. It is clear that neither S_1 nor S_2 is an extreme edge-to-vertex geodetic set of G and so $g_{ev} \ge l$. However, S_e is an extreme edge-to-vertex geodetic set of G so that that $g_{ev} = l$. Therefore G is a perfect extreme edge-to-vertex geodesic graph.

References

- [1] F. Buckley, F. Harary, *Distance in Graphs*, Addition- Wesley, Redwood City, CA, 1990.
- [2] G. Chartrand, F. Harary, Zhang, On the Geodetic Number of a graph, *Networks* vol. 39(1), (2002) 1 6.
- [3] G. Chartrand, P. Zhang, Extreme geodesic graphs, *Czech. Math. Journal*, 52(127)(2002) 771 780
- [4] F. Hararry, Graph Theory, Addison- Wesley, Reading, MA. 1969.
- [5] F. Hararry, E. Loukakis and C. Tsouros, The geodetic number of a graph, *Math. Comput. Modelling* 17 (1993), 89–95.
- [6] John.J, Vijayan A and Sujitha S, The upper Edge-to-Vertex Geodetic Number of a Graph, *International Journal of Mathematical Archive*, 3(4)(2012) 1423-1428.
- [7] P.A. Ostrand Graphs with specified radius and diameter, *Discrete Math.* 4(1973)71 75.
- [8] Santhakumaran .A.P and John .J, On the Edge-to-Vertex Geodetic Number of a Graph, Miskolc Mathematical Notes, 13(1)(2012) 107-119.
- [9] A. P.Santhakumaran and J. John, The Edge-to-Vertex Geodetic Number of a Graph(submitted).