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Abstract

In this article a mathematical model for predator prey system with immigrant prey
is proposed.In this study we found the equilibrium points and analysed their local
and global stabilities. The results have been illustrated using numerical simulations
along with their graphs for certain parametric values. These results can also be
interpreted in terms of import of commodities and their impact on consumers.
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1. Introduction

Ever since Lokta Volterra designed the system of differential equation to understand
the interaction between predator and prey in any environment, researchers made many
alterations by introducing different facets to Predator prey equations like harvesting prey
and predators, delay in predator growth, providing additional food to predator to sustain
prey population, diseases prey etc see [3–6]. In 1997 S.V. Krishna et al. [8] studied the
optimal tax policy in predator prey system with harvest. Adaptive control with known
and unknown parameters is studied my El-Gohary, A., and Al-Ruzaiza, A. S. [1] and [2]
by introducing the control parmeters in two prey one predator system. Many authors
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studied the existence of Hopf bifurcation and periodic solution related to predator prey
systems.

In this article we want to introduce the novice concept of immigrant prey and explore
the consequence of immigrant prey when enter in prey predator system. We believe this
is entirely new concept and adds a new dimension to the existing predator prey systems
hence offers possibilities for further indepth studies. Our model can also viewed as
Predator and two interactive prey model. We believe that this study also influence
economic strategies regarding the immigration policy of nations in not only protecting the
local commodities from over exploitation and also strengthening the local commodities
qualitatively and quantitatively through cautiously allowing imports to country.

This research article is organized as follows: In section 2 we present our predator
prey model with immigrant prey along with the assumptions made to derive the model.
In section 3 we discuss the possible equilibrium points in this model along with their
stability. In section 4 we discuss the global stability of the model with the construction
of a suitable Lyapunov’s function. In section 5 we illustrate numerical simulations of
the model along with conclusions.

2. Model Formulation

We propose, formulate and analyze the prey predator system with immigrant prey to
understand the interaction between local and immigrant prey and also their influence on
predator. This dynamics is assumed to follow mass action theory. The model consists of
prey population density denoted by N(t) = S(t) + X(t) where S(t) is local prey pop-
ulation density, X(t) is immigrant prey population density and the predator population
density is denoted by Y (t).

We impose the following assumptions in formulating mathematical model:

(i) In the absence of predator, the local prey population grows logistically with in-
trinsic growth rate α1 and having environmental carrying capacity k1.

(ii) With availability of immigrant prey and local prey populations, the predator pop-
ulation growth logistically with intrinsic growth rate c1 and c2 while suffering loss
at the rates µ1 and µ2

(iii) In the presence of predator, the prey population can be classified as two sub-classes,
namely, the local prey S(t) and the immigrant prey X(t).

(iv) The local prey and immigrant prey can reproduce. Logistic law is used to model
the birth process with the assumption that births should always be positive. The
immigrant prey is increased at the rate α2 and environmental carrying capacity k2.

(v) We assume immigranr prey as the natural choice of predator. Hence the interaction
between immigrant and local prey has positive effect on local prey with the force of
interactionβ1while negative impact on immigrant prey with the force of interaction
β2.
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(vi) It is assumed that the local prey is catched by predator the at the rate γ 1 and
immigrant prey is catched by the predator at the rate ofγ 2 and it is assumed to
follow the simple mass action in these interaction process.

Based on above assumptions, we propose a mathematical model that governed by
the following system of the differential equations:

dS

dt
= S

(
α1 − α1S

k1

)
+ β1SX − γ 1SY,

dX

dt
= X

(
α2 − α2X

k2

)
− β2SX − γ 2XY, (2.1)

dY

dt
= c1SY + c2XY − µ1Y − µ2Y

2,

with the initial populations:

S(0) = S0, X(0) = X0, Y (0) = Y0. (2.2)

3. Model analysis

We qualitatively analyze the model equations (2.1) and (2.2) to see the effect of immigrant
prey toward the local prey and the predator.

3.1. Boundedness of the model

The boundedness of the system equations (2.1) implies that the system is well behaved.

Theorem 3.1. All solutions of the system (2.1) are uniformly bounded.

Proof. Assume W denote the total populations in the specific model, that is

W = S + X + Y (3.1)

this gives
dW

dt
= dS

dt
+ dX

dt
+ dY

dt
(3.2)

Now, substituting the model equations (2.1) into (3.2)and simplify we get

dW

dt
≤ α1S + α2X − µ1Y

on simplifying we get

dW

dt
≤ p̂1(α1 + 1) + p̂2(α2 + 1) − hW (3.3)
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where p̂1 = max{S(0), k1} , p̂2 = max{X(0), k2} and h = min
{
1, 1, µ1

}
.

The equation (3.3) can be written as

dW

dt
+ hW ≤ {

p̂1(α1 + 1) + p̂2(α2 + 1)
}
. (3.4)

Solving (3.4) and substituting the initial conditions we get

W ≤
{
p̂1(α1 + 1) + p̂2(α2 + 1)

}
h

(1 − e−ht ) (3.5)

as t → ∞ we have

W ≤
{
p̂1(α1 + 1) + p̂2(α2 + 1)

}
h

which is implies that the solution is bounded for

0 ≤ W ≤
{
p̂1(α1 + 1) + p̂2(α2 + 1)

}
h

.

Therefore, all solutions of the model (2.1) in �3+ are confined in the region

� =
{

(S, X, Y ) ∈ �3+W ≤
{
p̂1(α1 + 1) + p̂2(α2 + 1)

}
h

+ ε

}
.

�

3.2. Positivity of solutions

For model (2.1) to be logically meaningful and well posed, we need to prove that all
solutions of system with positive initial data will remain positive for all the times. This
will be established by the following theorem.

Theorem 3.2. Let S(0) > 0, X(0) > 0, Y (0) > 0 this implies that S(t), X(t) and Y (t)

of system (2.1) are all positive for ∀t ≥ 0.

Proof. To prove theorem (3.2), we use all equations of the model (2.1). From the 1st
equation, we obtain the inequality expression as follows

dS

dt
≤ α1S

(
1 − S

k1

)
(3.6)

which gives

S ≤ k1S(0)

e−α1t {k1 − S(0)} + S(0)
(3.7)

As t → ∞ we obtain 0 ≤ S ≤ k1. Hence all feasible solution of system (2.1) is feasible
in region � = {S, X, Y }. Similar proofs can be established for the positivity of the other
solutions. �
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4. Equilibria and stability analysis

4.1. Equilibrium points

The system of differential equation (2.1)has the following equilibrium points by setting

dS

dt
= dX

dt
= dY

dt
= 0

The model equations (2.1) has the following equilibrium points

(i) A trial equilibrium point

ET (S∗, X∗, Y ∗) = (0, 0, 0),

(ii) The axial equilibrium point for local prey

EL(S∗, X∗, Y ∗) = (k1, 0, 0),

(iii) The axial equilibrium point for immigrant prey

EI(S
∗, X∗, Y ∗) = (0, k2, 0),

(iv) The equilibrium point where no local prey involved in the system,
that is S∗ = 0 is

E(S∗, X∗, Y ∗) =
(

0,
k2

(
µ2α2 + γ 2µ1

)
γ 2k2c2 + µ2α2

,
α2 (c2k2 − µ1)

γ 2k2c2 + µ2α2

)

(v) The equilibrium point where no immigrant prey involved in the system,
that is X∗ = 0 is

E(S∗, X∗, Y ∗) =
(

k1
(
µ2α1 + γ 1µ1

)
c1k1γ 1 + µ2α1

, 0,
α1 (c1k1 − µ1)

c1k1γ 1 + µ2α1

)

(vi) Endemic equilibrium point of the model equation (2.1) are

S∗ = k1
(
µ2α1α2 + c2α1k2γ 2 + β1k2µ2α2 + β1k2µ1γ 2 + γ 1µ1α2 − γ 1c2k2α2

)
c1k1γ 1α2 + µ2α1α2 + µ2β2k1k2β1 + c1k1β1k2γ 2 − c2k2β2k1γ 1 + c2α1k2γ 2

X∗ = k2
(
c1k1γ 1α2 + µ2α1α2 − µ2α1β2k1 − c1k1α1γ 2 − µ1β2k1γ 1 + µ1α1γ 2

)
c1k1γ 1α2 + µ2α1α2 + µ2β2k1k2β1 + c1k1β1k2γ 2 − c2k2β2k1γ 1 + c2α1k2γ 2

Y ∗ = α1c1k1α2 − α1µ1α2 − α1c2k2β2k1 + α1c2k2α2 + α2c1k1β1k2 − β2k1k2β1µ1

c1k1γ 1α2 + µ2α1α2 + µ2β2k1k2β1 + c1k1β1k2γ 2 − c2k2β2k1γ 1 + c2α1k2γ 2

Based on our assumptions and the nature of the model we can justify that all the equi-
librium points are in the positive octant of the spatial region.
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4.2. Local stability analysis

In this section, we study the local stability and existence criteria of the different equi-
librium points by using the Jacobian matrix of the system of equations (2.1). From the
model equation (2.1) we formulate the Jacobian matrix as follows:

J =

⎡
⎢⎢⎢⎢⎢⎣

α1 − 2
α1S

k1
+ β1X − γ 1Y β1S −γ 1S

−β2X α2 − 2
α2X

k2
− β2S − γ 2Y −γ 2X

c1Y c2Y c1S + c2X − µ1 − 2 µ2Y

⎤
⎥⎥⎥⎥⎥⎦ (4.1)

We now check the stability around the different equilibrium points as follows: The
trivial equilibrium point ET (S∗, X∗, Y ∗) = (0, 0, 0) always exist but unstable. The
axial equilibrium point for local prey EL(S∗, X∗, Y ∗) = (k1, 0, 0) will be stable if

c1k1 < µ1 and α2 < β2k1 (4.2)

The axial equilibrium point for immigrant prey EL(S∗, X∗, Y ∗) = (0, k2, 0) will be
stable if

c2k2 < µ1 and α1 < −β1k2 (4.3)

With the absence of local prey the model will be stable if

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1/2
µ1µ2α2 + α2γ 2µ1 + µ2α2

2 + c2k2µ2α2 − √
A1

c2k2γ 2 + µ2α2

−1/2
−µ1µ2α2 + α2γ 2µ1 + µ2α2

2 + c2k2µ2α2 + √
A1

c2k2γ 2 + µ2α2

−α1c2k2γ 2 − α1µ2α2 − β1k2µ2α2 − β1k2γ 2µ1 + γ 1α2c2k2 − γ 1α2µ1

c2k2γ 2 − µ2α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.4)

where

A1 = µ1
2µ2

2α2
2 + 2 γ 2µ1

2µ2α2
2 + 2 µ1µ2

2α2
3 − 2 µ1µ2

2α2
2c2k2

+ α2
2γ 2

2µ1
2 + 2 α2

3γ 2µ1µ2 + 2 α2
2γ 2µ1c2k2µ2 + µ2

2α2
4

− 2 c2k2µ2
2α2

3 + c2
2k2

2µ2
2α2

2 − 4 c2
2k2

2µ2α2
2γ 2

+ 4 α2γ 2
2µ1

2c2k2 − 4 α2c2
2k2

2γ 2
2µ1

with the absence of immigrant prey the model shows stability behaviour with the fol-
lowing eigenvalues
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1/2
µ2α1

2 + c1k1µ2α1 − µ1µ2α1 + α1γ 1µ1 − √
A2

c1k1γ 1 + µ2α1

−1/2
µ2α1

2 + c1k1µ2α1 − µ1µ2α1 + α1γ 1µ1 + √
A2

c1k1γ 1 + µ2α1

−α2c1k1γ 1 + β2k1γ 1µ1 + γ 2α1c1k1 + β2k1µ2α1 − α1µ2α2 − γ 2α1µ1

c1k1γ 1 − µ2α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

where

A2 = µ2
2α1

4 − 2 µ2
2α1

3c1k1 + 2 µ2
2α1

3µ1 + 2 µ2α1
3γ 1µ1 + c1

2k1
2µ2

2α1
2

− 2 c1k1µ2
2α1

2µ1 + 2 c1k1µ2α1
2γ 1µ1 + µ1

2µ2
2α1

2 + 2 µ1
2µ2α1

2γ 1

+ α1
2γ 1

2µ1
2 + 4 c1k1γ 1

2α1µ1
2 − 4 c1

2k1
2γ 1

2α1µ1 − 4 c1
2k1

2γ 1α1
2µ2

The local stability of coexistence is given by the polynomial equation

λ3 + B1λ
2 + B2λ + B3 = 0 (4.6)

where

B1 = −c1S k2k1 + B − k1γ 2Y k2 + k2α1k1 − 2 k2α1S + k2β1 k1 − k2γ 1Y k1

k2k1

where

B = c2 k2k1 − µ1k2k1 − 2 µ2Y k2k1 + k1α2k2 − 2 k1α2 − k1β2S k2

B2 = −
D + c1S2k1β2k2 − 4 µ2Y k1α2 − 2 µ2Y k1β2S k2 − 2 γ 2Y k2α1S
+2 c2 k2α1S + 2 µ2Y k1α2k2

k2k1

B3 = −
µ1γ 2Y k2β1 k1 − µ1β2S k2γ 1Y k1 − c2 β2S k2α1k1 − c2 α2k2γ 1Y k1

−2 µ2Y 2β2S k2γ 1k1 + C − 2 c2 α2k2α1S

k2k1

where

D = c1S k1γ 2Y k2 − c1S k2α1k1 − c1S k2β1 k1 − c2 k1α2k2 + α2k2γ 1Y k1

+ β2S k2α1k1 − α2k2β1 k1 + γ 2Y k2α1k1 − γ 2Y 2k2γ 1k1 − β2S k2γ 1Y k1

+ 2 α2 α1k1 + γ 2Y k2β1 k1 − c2 k2α1k1 + c2 k1β2S k2 − c2
2k2β1k1

+ c2 k2γ 1Y k1 − µ1k1β2S k2 − µ1k1γ 2Y k2 + 2 c2
2k1α2

− 2 µ1k1α2 − c1S k1α2k2
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where

C = 2 µ2Y β2S k2α1k1 − 2 µ2Y α2k2β1 k1 + 2 µ2Y 2γ 2k2β1 k1

− 2 c1S α2 α1k1 − 2 µ1α2 γ 1Y k1 + 2 c2 β2S2k2α1 + 2 Y c2 k1β2γ 1S k2

− 2 µ1γ 2Y k2α1S + c2 α2k2α1k1 − 8 µ2Y α2 α1S + 4 µ2Y α2 α1k1

− 2 µ2Y α2k2α1k1 + 2 µ2Y 2α2k2γ 1k1 − 4 µ2Y β2S2k2α1

+ 4 µ2Y α2k2α1S + 4 µ2Y α2
2β1k1

Using the Routh-Hurwitz criteria, the coexistence equilibrium point will be stable if the
equation (4.6) will obey

B1 > 0, B2 > 0, B3 > 0; B2B1 > B3. (4.7)

Otherwise the coexistence equilibrium point is unstable.

4.3. Global stability Analysis

We perform global stability analysis of the system (2.1) around the positive equilibrium
point of the coexistence E(S∗, X∗, Y ∗). We consider the following theorem on the
Lyapunov function U .

Theorem 4.1. Let

U = 1

2
(S − S∗)2 + 1

2
ξ1(X − X∗)2 + 1

2
ξ2(Y − Y ∗)2 (4.8)

where ξ1, ξ2 > 0 to be chosen carefully such that U
′
(E) = 0 then E(S∗, X∗, Y ∗) and

U = (S, X, Y ) > 0, ∀S, X, Y | {E} (4.9)

The time derivative of U is
dU

dt
≤ 0, ∀S, X, Y ∈ �+ then

dU

dt
= 0, ∀S, X, Y ∈ �+ (4.10)

implies that E∗ of the system is Lyapunov stable and

dU

dt
< 0, ∀S, X, Y ∈ �+ (4.11)

near E∗ is global stable.

Proof. Let,

dU

dt
= (

S − S∗) dS

dt
+ ξ1

(
X − X∗) dX

dt
+ ξ2

(
Y − Y ∗) dY

dt
(4.12)
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substituting the model equations (2.1) and simplifying we get

dU

dt
= − (

S − S∗)2
{

α1S

k1
− α1 − β1X + γ 1Y

}

− ξ1
(
X − X∗)2

{
α2X

k2
− α2 + β2S + γ 2Y

}

− ξ2
(
Y − Y ∗)2 {

µ1 + µ2Y − c2X − c1S
}

Thus it is possible to set ξ1, ξ2 > 0 such that U
′ ≤ 0 and endemic positive equilibrium

point is globally stable. Therefore, the parameters k1 and k2 play important roles in
controlling the stability aspects of the system. �

5. Numerical simulation

In this section we present a numerical simulations of the model (2.1) using Rung-Kutta
iteration scheme with a set of reasonable parameter values given in Table 1. These
parameter values are mainly hypothetical but they are chosen following realistic and
ecological observations.

Table 1: Table for parameter values for the model.

Parameter symbol Parameter value

α1 0.12
k1 50
β1 0.2
β2 0.1
γ 1 0.01
γ 2 0.9
k2 30
c1 0.9
c2 0.8
µ1 0.01
µ2 0.01

In Figure 1, shows the distribution of population with time in all classes, it is observed
that immigrant populations decreases with time due to the strengthening of the local
prey masses and its availability to the predator than the immigrant prey.It also shows the
variation of the immigrant prey population with high amplitude to low as time increases.
It is also observed that the variation of the local prey with high oscillation amplitude
at the beginning and slowly decreases with time and eventually reached the steady
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Figure 1: Total variation of population around the parameter values in table 1.
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Figure 2: variation of immigrant and local prey populations with parameter values in
table 1.

state. We can also interpret how the predator population vary with time depending on
the interaction with local and immigrant prey populations. The sharply increase and
decrease of the population occurs as the result of high or low availability of local prey.
Figure 2 shows the interactions between local and immigrant prey, at the t = 0 predator
choice is based on immigrant prey and as time increases the predator could choose the
local prey. Figure 3 shows how the predator population interact with immigrant prey
and show spiral in indicating that the model is locally asymptotic stable. Figure 4 shows
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Figure 3: Variation of immigrant prey population against predator around parameter
values in table 1.
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Figure 4: Variation of local prey population against predator around parameter values in
table 1.
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Figure 5: Variation of total population around parameter values in table 1.

how the predator population interact with local prey and show spiral in indicating that
the model is locally asymptotic stable compared with Figure 5.

6. Summary and Conclusions

In this article we introduced a mathematical model for predator prey system with im-
migrant prey. The study indicates that immigrant prey helps for the survival and self
sustainability of local prey with out causing much damage to the existing predator in the
system. We also observe that predator population grows steadily without much fluctu-
ations. From this study we recommend that the system should facilitate some feasible
conditions for the immigrant prey to enter into the system which ensures the long time
survival and coexistence of prey and predator thus helps the peaceful coexistence of the
natural habitat.
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