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ABSTRACT 

 

In this paper we have generalized the Selection-Rejection Methodology for one 

dimensional continuous random variables to two dimensional continuous random 

variables and applied it to the  two dimensional normal distribution. 
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1.  INTRODUCTION. 

The Selection-Rejection Methodology for one dimensional continuous random 

variables was developed based on the idea of Acceptance-Rejection Method by the 

renowned mathematician, Von Neumann, from the University of Berlin. Von 

Neumann[1] came forward with his method during 1950’s but later on Karl 

Sigman[2] from Columbia University gave the similar methodology in 2007.Again in 

1989,Bernard D.Flury[3] from Indiana University came forward with the theory 

“Acceptance-Rejection Sampling Made Easy”.D.P.Kroese[4] from University of 

Queensland put forward his theory of Acceptance-Rejection in 2011.Selection-

Rejection Methodology can be applied to almost all statistical distributions and hence 

it has got immense physical significance. 

    

 

2. SELECTION-REJECTION METHODOLOGY FOR TWO 

DIMENSIONAL CONTINUOUS RANDOM VARIABLES. 

Let ,X Y be a two dimensional continuous random variable with probability 

distribution function ,f x y ,x y R ,where R =set of all real numbers. Let ,g x y

,x y R  where R =set of all real numbers be another probability density function 

such that 
,

,
,

f x y
k x y R

g x y
,where 1k  is a real number. By successively 



26  Sachinandan Chanda 

selecting different values of ,X Y we will try to make the ratio 
,

,

f x y

kg x y
as close to 1 

as possible. The probability density function ,f x y is called target distribution and 

he probability density function ,g x y is called proposal distribution. 

 

The step by step procedure for the Selection-Rejection Methodology is as follows. 

Step (1):- Let ,X Y be a two dimensional continuous random variable with 

probability distribution function ,f x y ,x y R , where R =set of all real numbers.                           

Step (2):- Let ,X Y be another two dimensional continuous random variable (which 

is independent of ,X Y ) with probability distribution function ,g x y ,x y R , 

where R =set of all real numbers. 

Step (3):- Let 
,Y

,Y
,Y

f X
k X R

g X
,where 1k a real number. 

Step (4):- Let 10 1R  and 20 1R  be two random numbers. 

Step (5):- Set X  in terms of 1R  and set Y  in terms of 2R depending on the 

expression obtained for the ratio
,Y

,Y

f X

kg X
. 

Step (6):- If 1 2

,

,

f X Y
R R

kg X Y
, then set , ,X Y X Y  and select the continuous 

random variable ,X Y ; otherwise reject the variable ,X Y  and repeat the process 

from step (1). 

The probability that the continuous random variable ,X Y  is selected is
1

k
. 

The number of iterations required to select ,X Y  is k . 

It may be noted that 
,Y

0 1
,Y

f X

kg X
 

To prove that the probability for the selection of ,X Y is 
1

k
’ 

Proof: -    
1 2

, ,
,

, ,

f X Y f X Y
P Select X Y P R R

kg X Y kg X Y
.. 

, v
, , v

, v

yx f w
P X Y is selected g w dwdv

kg w
 

1 1
,

yx

f w v dwdv
k k

            , 1

yx

f w v dwdv  
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Hence the proof. 

Since the probability of selection (i.e. success) is 
1

k
,the number of iterations needed 

will follow a geometric distribution with 
1

p
k

.So, on average it will take k  

iterations to generate a number. 

 

 

3. APPLICATION TO TWO DIMENSIONAL NORMAL DISTRIBUTION. 

Two dimensional normal distribution is given by  
2 2

2 21
, , 0, 0, ,

2

x x

f x y e x y x y R                                        (1) 

Here ,f x y  is the target function. 

Let  ( , ) , 0, 0
x y

g x y e x y  be the proposal distribution.            (2)  

Let   

2 2( , ) 1 2 2
( , ) exp

( , ) 22

f x y x y x y
h x y

g x y
                                 (3) 

With the help of differential calculus we can show that ( , )h x y  attains maximum at 

1,1 and the maximum value of ( , )h x y  is 1.0845( )
2

e
approximately . 

Choosing 
2

e
k    , we get  

2 2
, 1 1

exp exp
, 2 2

f x y x y

kg x y
                                     (4) 

Selection-Rejection Methodology for the two dimensional distribution is as follows 

Step (1):- Let ,X Y be a two dimensional continuous random variable with 

probability distribution function ,f x y ,x y R , where R =set of all real numbers. 

Step (2):- Let ,X Y be a two dimensional continuous random variable with 

probability distribution function ,g x y ,x y R , where R =set of all real numbers. 

Step (3):-Let  10 1R  and  20 1R  be two random numbers. 

Step (4):- Set 11 2ln( )X R   and  21 2ln( )Y R  

Step (5):-If  

2 2

1 2

1 1
exp exp

2 2

X Y
R R ,then  set 
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, ,X Y X Y  and select ,X Y ;otherwise reject ,X Y  and repeat the process 

from Step(1). 

 

 

Conclusion 

Selection-Rejection Methodology is valid for any dimension of continuous random 

variable. In this method we approximate the target function to proposal function so 

that after a number of successive iterations the proposal function becomes almost 

equal to target function and proposal function is selected. 
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