Coefficient Inequalities For Certain Classes Of Generalized Sakaguchi Type Functions With Respect To Symmetric Points

Saritha G. P¹ and S. Latha²

¹Department of Mathematics, Bahubali College of Engineering, Shravanbelagola, Hassan – 573135, India ²Dertment of Mathematics, Yuvaraja's College, University of Mysore, Mysore – 570005, India.

Abstract

In the present investigation, we introduce a new class K^{λ} A, B, s, t of certain coefficient inequalities and subordination properties for the class of generalized Sakaguchi type functions. Further we have obtained various inequalities for this class.

2000 Mathematics Subject Classification. 30C45

Key words and phrases: Coefficient Inequalities, Sakaguchi functions, Subordination, Starlike and close to convex with respect to symmetric points.

1. INTRODUCTION

Let *A* be the class of analytic functions of the form

$$f \ z = z + \sum_{n=2}^{\infty} a_n z^n \qquad z \in \Delta = z \in \Box : |z| < 1$$
 (1.1)

and S be the subclass of A consisting of univalent functions. For two functions $f,g \in A$, we say that the function f z is subordinate to g z in Δ and write $f \prec g$, or $f z \prec g z$; $z \in \Delta$ if there exists an analytic functions w z with $w \ 0 = 0$ and $|w z| < 1 z \in \Delta$, such that f z = g wz, $z \in \Delta$. In particular if the function g is univalent in Δ , the above subordination is equivalent to $f \ 0 = g \ 0$ and $f \ \Delta \subset g \ \Delta$.

42

Recently B. A. Frasin [4] introduced and studied a generalized Sakaguchi type class $S \alpha, s, t$ and $T \alpha, s, t$. A function $f z \in A$ is said to be in the class $S \alpha, s, t$ if it satisfies

$$\Re\left\{\frac{s-t \ zf^{\top} z}{f \ sz \ -f^{\top} tz}\right\} < \alpha \tag{1.2}$$

for some $0 \le \alpha < 1, s, t \in C$ with $s \ne t$ and for all $z \in \Delta$. We also denote by the subclass $T \alpha, s, t$ the subclass of A consisting of all functions f z such that $zf^{\dagger} z \in S \alpha, s, t$. The class $S \alpha, s, t$ that was introduced and studied by Owael. Al. [7] and by taking t = -1, the class $S \alpha, s, t \in S_s \alpha$ was introduced by Sakaguchi [4] and is called Sakaguchi function of order α , where as $S_s 0 = S_s$ is the class of starlike functions with respect to symmetrical points in Δ .

Also, we note that $S \alpha, 1, 0 = S * \alpha$ and $T \alpha, 1, 0 \equiv C \alpha$ which are respectively, the similar classes of starlike function of order α $0 \le \alpha \le 1$ and convex functions of order α $0 \le \alpha \le 1$.

Let S_s^{λ} A, B, s, t denote the class of functions of the form (1.1) and satisfying the condition

$$e^{i\lambda} \frac{s-t}{f} \frac{z}{sz - f} \frac{z}{tz} \prec \frac{1+Az}{1+Bz};$$
(1.3)

for $s, t \in C$, with $t \neq s$ where $-1 \leq N < A \leq 1$.

In this paper, we consider the class K_s^{λ} A, B, s, t of functions of the form (1.1) and satisfying the condition

$$e^{i\lambda} \frac{s-t}{g} \frac{zf}{sz} - g \frac{zt}{tz} \prec \frac{1+Az}{1+Bz};$$
(1.4)

for $s, t \in C$, with $t \neq s, g \in S_s^{\lambda}$ A, s, t, $-1 \leq B < A \leq 1$, $z \in \Delta$.

By the definition of subordination it follows that if $f \in K_s^{\lambda}$ A, B, s, t if and only if

$$e^{i\lambda} \frac{s-t}{g} \frac{zf'}{sz - g} \frac{z}{tz} = \frac{1+Az}{1+Bz} = \wp z ; \qquad (1.5)$$

for $s, t \in C$, with $t \neq s$, $|w \ z| < 1$, $w \in D$, $g \in S_s^{\lambda} A$, s, t, $-1 \le B < A \le 1$, $z \in \Delta$. where

$$\wp \ z = 1 + \sum_{n=1}^{\infty} \wp_n z^n.$$
 (1.6)

In this paper, we obtain the coefficient estimates of the class K_s^{λ} A, B, s, t.

2. PRELIMINARY RESULT

In the present paper, we obtain the coefficient inequality for the functions in the class K_s^{λ} A, B, s, t. To prove our main results, need the following Lemma:

Lemma 2.1. If $\wp z$ is given by (1.6) then

$$|\wp| \le A - B, \quad n = 1, 2, 3, 4, \dots$$
 (2.1)

Lemma 2.2. Let $f \in S_s^{\lambda}$ A, s, t then $n \ge 1$

$$|a_{n}| \leq \frac{A-B}{|n-u_{n}|} \begin{cases} 1+|A-B|\sum_{i=2}^{n-1}\frac{|u_{i}|}{|i-u_{i}|} + |A-B|^{2}\sum_{i_{2}>i_{1}}\sum_{i_{1}=2}^{n-2}\frac{|u_{i_{1}}u_{i_{2}}|}{|i_{1}-u_{i_{1}}|||i_{2}-u_{i_{2}}||} + \dots + \\ A-B|^{n-2}\prod_{i=2}^{n-1}\frac{|u_{i}|}{|i-u_{i}||} \end{cases}$$
(2.2)
where $u_{i} = \frac{s^{i}-t^{i}}{s-t}.$

3. MAIN RESULT

The coefficient inequalities for the class K_s^{λ} A, B, s, t.

Theorem 3.1.Let $f \in K_s^{\lambda}$ A, B, s, t then for $n \ge 1$,

Proof. Since $g \in K_s^{\lambda}$ A, B, s, t, then $e^{i\lambda} s - t zg^{|} z = \begin{bmatrix} g sz - g tz \end{bmatrix} \alpha \cos \lambda K s$, $z \in \Delta$

with $\Re K z > 0$, where $K z = 1 + c_1 z + c_2 z + c_3 z + ...$

Now equating the coefficients of above equation, we get

$$b_2 \quad 2 - u_2 \alpha = c_1 \alpha \tag{3.1}$$

$$b_{3} \ 3-u_{3}\alpha = c_{2}\alpha + \frac{c_{1}^{2}u_{2}\alpha^{2}}{2-u_{2}\alpha}$$
(3.2)

$$b_4 \quad 4 - u_4 \alpha = c_3 \alpha + \frac{c_1 c_2 u_2 \alpha^2}{2 - u_2 \alpha} + \frac{c_1 c_2 u_3 \alpha^2}{3 - u_3 \alpha} + \frac{c_1^2 u_2 u_3 \alpha^3}{2 - u_2 \alpha} \quad (3.3)$$

$$b_{5} \ 5-u_{5}\alpha = c_{4}\alpha + \frac{c_{1}c_{3}u_{2}\alpha^{2}}{2-u_{2}\alpha} + \frac{c_{2}^{2}u_{3}\alpha^{2}}{3-u_{3}\alpha} + \frac{c_{1}c_{3}u_{4}\alpha^{2}}{4-u_{4}\alpha} + \frac{c_{1}^{2}c_{2}u_{2}u_{3}\alpha^{3}}{2-u_{2}\alpha} + \frac{c_{1}^{2}c_{2}u_{2}u_{3}\alpha^{3}}{4-u_{4}\alpha} + \frac{c_{1}^{2}u_{3}u_{4}\alpha^{3}}{2-u_{2}\alpha} + \frac{c_{1}^{2}u_{3}u_{4}\alpha^{3}}{4-u_{4}\alpha} + \frac{c_{1}^{2}u_{3}u_{4}\alpha^{3}}{2-u_{2}\alpha} + \frac{c_{1}^{2}u_{3}u_{4}\alpha^{3}}{4-u_{4}\alpha} + \frac{c_{1}^{2}u_{3}u_{4}\alpha^{3}}{2-u_{2}\alpha} + \frac{c_{1}^{2}u_{3}u_{4}u_{4}\alpha^{3}}{2-u_{2}\alpha} + \frac{c_{1}^{2}u_{$$

Now from (1.4), we get

$$e^{i\lambda} s - t zf^{\dagger} z = [g sz - g tz] P z \alpha \cos \lambda$$
 (3.5)
Using the value from (1.5) and (1.6), we get

$$z + 2a_2z^2 + 3a_3z^3 + \dots + 2na_{2n}z^{2n} + 2n + 1 a_{2n+1}z^{2n+1} + \dots e^{i\lambda}$$

= $\begin{bmatrix} z + b_2z^2u_2 + b_3u_3z^3 + \dots + b_{2n}u_{2n}z^{2n} + b_{2n+1}u_{2n+1}z^{2n+1} + \dots \end{bmatrix}$.
 $\begin{bmatrix} 1 + p_1z + p_2z^2 + p_3z^3 + \dots + p_{2n}z^{2n} + p_{2+1}z^{2+1} + \dots \end{bmatrix}$.

Equating the coefficients of various powers of z, we have,

$$2a_2 = p_1 + u_2 b_2 \ \alpha, \tag{3.6}$$

$$3a_3 = p_2 + p_1 u_2 b_2 + u_3 b_3 \ \alpha, \tag{3.7}$$

$$4a_4 = p_3 + p_1 u_3 b_3 + p_2 u_2 b_2 + u_4 b_4 \quad \alpha, \tag{3.8}$$

$$5a_5 = p_4 + p_1u_4b_4 + p_2u_3b_3 + p_3u_2b_2 + u_5b_5 \ \alpha, \tag{3.9}$$

Similarly we can get,

$$na_{n} = p_{n-1} + p_{1}u_{n-1}b_{n-1} + \dots + b_{2}u_{2}p_{n-2}b_{n}u_{n}$$
(3.10)
Where $u_{i} = \frac{s^{i} - t^{i}}{s^{i} - t^{i}}$.

$$s-t$$

From Lemma 2.1 and Lemma 2.2 in (3.7) and (3.8) respectively, we get

$$|2a_{2}| \le a^{2} \left[1 + \frac{|u_{2}\alpha|}{|2 - u_{2}\alpha|} \right], \tag{3.11}$$

$$|3a_{3}| \le \alpha^{2} \left[1 + \frac{u_{3}\alpha}{|3-u_{3}\alpha|} \right] \left\{ 1 + \frac{|u_{2}|\alpha}{|2-u_{2}\alpha|} \right\},$$
(3.12)

Similarly from Lemma (2.1) and Lemma (2.2) in (3.9) and (3.10) respectively, we get

$$\begin{aligned} |4a_{4}| &\leq \alpha^{2} \left[1 + \frac{u_{4}\alpha}{|4 - u_{4}\alpha|} \right] 1 + \frac{|u_{2}|}{|2 - u_{2}\alpha|} + \frac{|u_{3}|}{|3 - u_{3}\alpha|} + \frac{|u_{2}u_{3}|}{|2 - u_{2}\alpha||3 - u_{3}|}, \quad (3.13) \end{aligned}$$

$$\begin{aligned} |5a_{5}| &\leq \alpha^{2} \left[1 + \frac{u_{5}\alpha}{|5 - u_{5}\alpha|} \right] \begin{cases} 1 + \alpha \left(\frac{|u_{2}|}{|2 - u_{2}\alpha|} + \frac{|u_{3}|}{|3 - u_{3}\alpha|} + \frac{|u_{4}|}{|4 - u_{4}\alpha|} \right) + \frac{|u_{3}u_{4}|}{|4 - u_{4}\alpha|} + \frac{|u_{3}u_{4}|}{|3 - u_{3}\alpha||3 - u_{4}\alpha|} \right] \\ \alpha^{2} \left(\frac{|u_{2}u_{3}|}{|2 - u_{2}\alpha||3 - u_{3}\alpha|} + \frac{|u_{2}u_{4}|}{|2 - u_{2}\alpha||4 - u_{4}\alpha|} + \frac{|u_{3}u_{4}|}{|3 - u_{3}\alpha||3 - u_{4}\alpha|} \right) + \frac{|u_{3}u_{4}|}{|3 - u_{3}\alpha||3 - u_{4}\alpha|} \end{aligned}$$

It follows that from above equations Theorem 3.1 holds for n = 2, 3, 4 and 5. Now by mathematical induction, we can easily prove Theorem 3.1.

From 3.11 and Lemma 2.1 and Lemma 2.2, we get,

Coefficient Inequalities For Certain Classes

$$|a_{n}| \leq \frac{\alpha^{2}}{n} \left(1 + \frac{|u_{n}|}{|n - u_{n}\alpha|} \right) \left[1 + \alpha \sum_{i=2}^{n-1} \frac{|u_{i}|}{|i - \alpha u_{i}|} + \alpha^{2} \sum_{i_{2} > i_{1}}^{n-1} \sum_{i_{1} = 2}^{n-1} \frac{|u_{i}|}{|i_{1} - \alpha u_{i_{1}}|} |i_{2} - \alpha u_{i_{2}}| + \dots + \alpha^{n-2} \prod_{i=2}^{n-1} \frac{|u_{i}|}{|i - \alpha u_{i}|},$$

$$(3.15)$$

Where
$$\alpha = A - B$$
 and $u_i = \frac{s^i - t^i}{s - t}$

Corollary 3.2.Let $f \in K_s$ A, B, t, then for $n \ge 1$,

$$|a_{n}| \leq \frac{\alpha^{2}}{n} \left(1 + \frac{|u_{n}|}{|n - u_{n}\alpha|} \right) \left| \begin{array}{c} 1 + \alpha \sum_{i=2}^{n-1} \frac{|u_{i}|}{|i - \alpha u_{i}|} + \alpha^{2} \sum_{i_{2} > i_{1}}^{n-1} \sum_{i_{1} = 2}^{n-2} \frac{|u_{i}|}{|i_{1} - \alpha u_{i_{1}}|} \left| \frac{|u_{i_{2}}|}{|i_{2} - \alpha u_{i_{2}}|} \right| \\ + \dots + \alpha^{n-2} \prod_{i=2}^{n-1} \frac{|u_{i}|}{|i - \alpha u_{i_{1}}|}, \end{array} \right.$$
(3.16)

Where
$$\alpha = A - B$$
 and $u_i = \frac{1 - t^i}{1 - t}$.

Proof. Let S_s^{λ} A, B, t, the class of functions of the form (1.1) and satisfying the condition

$$\frac{1-t \ zf^{\top} \ z}{f \ z \ -f \ tz} \prec \phi \ z \ ; |t| \le 1, t \ne 1, \text{ where } \phi \ z \ = \frac{1+Az}{1+Bz}, -1 \le B < A \le 1$$

then

$$|a_{n}| \leq \frac{\alpha^{2}}{n} \left(1 + \frac{|u_{n}|}{|n - u_{n}\alpha|} \right) \left[1 + \alpha \sum_{i=2}^{n-1} \frac{|u_{i}|}{|i - \alpha u_{i}|} + \alpha^{2} \sum_{i_{2} > i_{1}}^{n-1} \sum_{i_{1}=2}^{n-2} \frac{|u_{i_{1}}||u_{i_{2}}|}{|i_{1} - \alpha u_{i_{1}}|||u_{i_{2}}|} + \dots + \alpha^{n-2} \prod_{i=2}^{n-1} \frac{|u_{i}|}{|i - \alpha u_{i}|} \right]$$
(3.18)

Remark 3.3. Put s = 1 and t = -1 in Theorem 3.1 we get [6].

Remark 3.4. Put t = -1 in Corollary 3.2 we get [6].

REFERENCES

- [1] Das, R. N. and Singh, P., On subclasses of schlicht mapping, Indian J. Pure Appl. Math, 8(1977), 864-872.
- [2] Duren, P.L., Univalent functions. New York, Spinger-Verlag, (1983).
- [3] Goel, R. M. and Mehrok, B. C., A subclass of starlike functions wirh respect to symmetric points, Tamkag J. Math, 13 (1)(1982), 11-24.
- [4] Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan, 11(1959), 72-75.
- [5] V. B. L. Chaurasia and Ravi Shanker Dubey, Coefficient inequalities for cetain classes of generalized Sakaguchi type functions with respect to symmetric points, Int. J. Math. Archive 3(5), 2012, 2173-2177.
- [6] Janteng, A. and Suzeini, A.H., Coefficient Estimate for a Subclass of Close-to-Convex Functions with respect to symmetric points, Int. Journal of Math. Analysis, Vol. 3, 2009, no. 7, 309-313.
- [7] Owa, S., Sekine T. and Yamakawa R., On Sakaguchi type functions, applied Mathematics and computation 187 (2007) 356-361.