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Abstract

In this paper we introduce the notion of 2-primal semiring similar to the notion in
ring. We also give some characterizations of 2-primal semirings by using prime
ideals and insertion of factors property.
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1. Introduction

The study of 2-primal rings was inaugurated by G. Shin [5] (although the name “2-
primal" was not coined at that time). Also he proved that a ring is 2-primal if and only
if each of its minimal prime ideals is completely prime. The name “2-primal" was first
introduced by Birkenmeier-Heatherly-Lee in [4]. Essential properties of 2-primal rings
are developed in [1], [2] and [7].

In ths paper we introduce the concept of 2-primal semirings. For a prime ideal P

of a semiring S, we define the subsets O(P ), OP , N(P ), NP , O(P ), N(P ), OP and
NP of S as in ring and using these subsets we characterize 2-primal semirings. Also we
generalise many results of 2-primal rings in 2-primal semirings. Some earlier works on
semirings of the author may be found in [9], [10], [11] and [12].

2. Preliminaries

Definition 2.1. A nonempty set S is said to form a semiring with respect to two binary
compositions, addition (+) and multiplication (·)defined on it, if the following conditions
are satisfied.
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(1) (S, +) is a commutative semigroup with zero,

(2) (S, ·) is a semigroup,

(3) for any three elements a, b, c ∈ S

the left distributive law a · (b + c) = a · b + a · c and
the right distributive law (b + c) · a = b · a + c · a both hold and

(4) s · 0 = 0 · s = 0 for all s ∈ S.

If S contains the multiplicative identity 1, then S is called a semiring with identity.
Throughout this paper we assume a semiring S means a semiring with identity.

Definition 2.2. A nonempty subset I of a semiring S is called a left ideal of S if (i)
a, b ∈ I implies a + b ∈ I and (ii) a ∈ I , s ∈ S implies s.a ∈ I .

Similarly we can define right ideal of a semiring. A nonempty subset I of a semiring
S is an ideal if it is a left ideal as well as a right ideal of S.

Definition 2.3. [3] An ideal I of a semiring S is called a k-ideal if a + b ∈ I and a ∈ I

implies b ∈ I .

Definition 2.4. [6] A proper ideal I of a semiring S is called a prime ideal if AB ⊆ I

implies either A ⊆ I or B ⊆ I , where A and B are ideals of S.

Definition 2.5. [6] A proper ideal I of a semiring S is called a semiprime ideal if A2 ⊆ I

implies A ⊆ I , where A is an ideal of S.

Definition 2.6. A semiring S is called a prime semiring if {0} is a prime ideal of S.

Definition 2.7. A semiring S is called a semiprime semiring if {0} is a semiprime ideal
of S.

Definition 2.8. An ideal I of a semiring S is said to be completely prime if ab ∈ I

implies a ∈ I or b ∈ I for a, b ∈ S.

Definition 2.9. An ideal I of a semiring S is said to be completely semiprime if a2 ∈ I

implies a ∈ I for a ∈ S.

Definition 2.10. A subset M of a semiring S is said to be m-system if for any a, b ∈ M ,
there exists s ∈ S such that asb ∈ M .

Definition 2.11. [6] Let I be a proper ideal of a semiring S. Then the congruence on S,
denoted by ρI and defined by sρI s

′ if and only if s + a1 = s′ + a2 for some a1, a2 ∈ I ,
is called the Bourne congruence on S defined by the ideal I .

We denote the Bourne congruence (ρI ) class of an element r of S by r/ρI or simply
by r/I and denote the set of all such congruence classes of S by S/ρI or simply by S/I .
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It should be noted that for any s ∈ S and for any proper ideal I of S, s/I is not
necessarily equal to s + I = {s + a : a ∈ I } but surely contains it.

Definition 2.12. [6] For any proper ideal I of S if the Bourne congruence ρI , defined
by I , is proper i.e. 0/I �= S then we define the addition and multiplication on S/I by
a/I + b/I = (a + b)/I and (a/I)(b/I) = (ab)/I for all a, b ∈ S. With these two
operations S/I forms a semiring and is called the Bourne factor semiring or simply the
factor semiring.

Definition 2.13. Let A be a non-empty subset of a semiring S. Right annihilator of A

in S, denoted by annR(A), is defined by annR(A) = {s ∈ S : As = 0}.
If A = {a}, then we denote annR(A) by annR(a).

Analogously we can define left annihilator (annL(A)) of A. Annihilator of a set A

is denoted by ann(A) which is left as well as right annihilator of A.

Remark 2.14. If S is a semiring with absorbing zero then annR(A) is a right ideal of S

and annL(A) is a left ideal of S. If A is an ideal of S then both annihilators are ideals
of S.

3. 2-primal semiring

Definition 3.1. A semiring S is said to be 2-primal semiring if P(S) = N (S), where
P(S) denotes the prime radical of S i.e. intersection of all prime ideals of S and N (S)

denotes the set of all nilpotent elements of S.

Definition 3.2. A semiring S is said to be reduced if it has no nonzero nilpotent elements.

Proposition 3.3. Every reduced semiring is 2-primal.

Proof. Since for any semiring S, P(S) ⊆ N (S), reduced semirings are 2-primal. �

Definition 3.4. An ideal I of a semiring S is said to have the insertion of factors property
or simply IFP if ab ∈ I implies aSb ⊆ I for a, b ∈ S.

Definition 3.5. An ideal I of a semiring S is said to be right (left) symmetric if abc ∈ I

implies acb ∈ I (respectively bac ∈ I ) for a, b, c ∈ S.

Definition 3.6. A semiring S is said to be satisfy (SI) if for each a ∈ S, annR(a) is an
ideal of S.

Lemma 3.7. For any semiring S the following statements are equivalent:

(i) S satisfies (SI).

(ii) For any a, b ∈ S, ab = 0 implies aSb = 0.
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Proof. (i) ⇒ (ii) Let ab = 0, for a, b ∈ S. Then b ∈ annR(a). As annR(a) is an ideal
of S, Sb ⊆ annR(a). So aSb = 0.

(ii) ⇒ (i) Obviously annR(a) is a right ideal of S for each a ∈ S. Let b ∈ annR(a)

and s ∈ S. Then ab = 0 and by (ii), aSb = 0. So S(annR(a)) ⊆ annR(a). Therefore
annR(a) is an ideal of S for each a ∈ S. �

Proposition 3.8. If S satisfies (SI), then S is a 2-primal semiring.

Proof. We know P(S) ⊆ N (S). Suppose a ∈ N (S), then an = 0, for some positive
integer n. If possible let a �∈ P(S). Then a �∈ P for some prime ideal P of S i.e.
a ∈ S − P . As P is prime, S − P is an m-system. So there exists s1 ∈ S such
that as1a ∈ S − P . Again since as1a, a ∈ S − P , there exists s2 ∈ S such that
as1as2a ∈ S − P . Continuing this process, there exist s3, s4, . . . , sn−1 in S such that
as1as2a, . . . , asn−1a ∈ S − P . Since S satisfies (SI), by Lemma 3.7, an = 0 i.e.
aan−1 = 0 implies as1a

n−1 = 0 ⇒ (as1a)an−2 = 0 ⇒ (as1a)s2a
n−2 = 0 [by Lemma

3.7]. Continuing this process, we get as1as2a . . . asn−1a = 0 ∈ P , a contradiction.
Thus a ∈ P(S). So P(S) = N (S) i.e. S is a 2-primal semiring. �

Definition 3.9. For a prime ideal P of a semiring S, we define
O(P ) = {x ∈ S : xSy = 0 for some y ∈ S − P }.
O(P ) = {x ∈ S : xn ∈ O(P ) for some positive integer n}.

OP = {x ∈ S : xy = 0 for some y ∈ S − P }.
OP = {x ∈ S : xn ∈ OP for some positive integer n}.
N(P ) = {x ∈ S : xSy ⊆ P(S) for some y ∈ S − P }.
N(P ) = {x ∈ S : xn ∈ N(P ) for some positive integer n}.
NP = {x ∈ S : xy ∈ P(S) for some y ∈ S − P }.
NP = {x ∈ S : xn ∈ NP for some positive integer n}.

Now O(P ) and N(P ) are subsets of P , O(P ) ⊆ OP ⊆ OP and N(P ) ⊆ NP ⊆ NP

for each prime ideal P of S.

Proposition 3.10. Let S be a semiring and P be a prime ideal of S. Then
O(P ) = {x ∈ S : xS < y >= 0 for some y ∈ S − P } and
N(P ) = {x ∈ S : xS < y >⊆ P(S) for some y ∈ S − P }, where < y > denotes the
ideal of S generated by y.

Proof. Let A = {x ∈ S : xS < y >= 0 for some y ∈ S − P }. Clearly A ⊆ O(P ).
Suppose x ∈ O(P ). Then xSy = 0 for some y ∈ S − P . Now elements of < y > are

of the form s′y + ys′′ + ny +
m∑

i=1

siys′
i , where s′, s′′, si, s′

i ∈ S and n is a non-negative

integer. So xS < y >= 0. Therefore x ∈ A. Thus O(P ) = A.
As P(S) is an ideal of S, the proof of the second part is similar as first part. �

Proposition 3.11. Let S be a semiring and P be a prime ideal of S. Then O(P ) and
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N(P ) are k-ideals of S.

Proof. O(P ) is a nonempty subset of S, since 0 ∈ O(P ). Let x1, x2 ∈ O(P ). Then
there exist y1 and y2 in S−P such that x1S < y1 >= 0 and x2S < y2 >= 0. Since P is a
prime ideal of S, S−P is a m-system. So there exists s ∈ S such that y1sy2 ∈ S−P . Now
< y1sy2 >⊆< y1 > and < y1sy2 >⊆< y2 >. Therefore (x1 + x2)S < y1sy2 >= 0.
Thus x1 + x2 ∈ O(P ).

Let x ∈ O(P ). Then there exists y ∈ S − P such that xS < y >= 0. Therefore
SxS < y >= 0 and xSS < y >⊆ xS < y >= 0. Thus Sx, xS ⊆ O(P ). So O(P ) is
an ideal of S.

Let x1 + x2 ∈ O(P ) and x1 ∈ O(P ). Then there exist y1 and y2 in S − P such that
(x1 + x2)S < y1 >= 0 and x1S < y2 >= 0. Since S − P is an m-system, there exists
s such that y1sy2 ∈ S − P . Now < y1sy2 >⊆< y1 > and < y1sy2 >⊆< y2 >. So
(x1 + x2)S < y1sy2 >= 0 and x1S < y1sy2 >= 0. Therefore x2S < y1sy2 >= 0.
Thus x2 ∈ O(P ). Hence O(P ) is a k-ideal of S.

Since P(S) is a k-ideal of S, by similar argument we can prove that N(P ) is a k-ideal
of S. �

Proposition 3.12. Let S be a semiring and P be a prime ideal of S such that OP and
NP are ideals of S.

(i) If OP (resp. NP ) has the IFP, then OP (resp. NP ) is an ideal of S.

(ii) OP ( resp. NP ) is a completely semiprime ideal of S if and only if OP = OP

(resp. NP = NP ).

Proof.

(i) Clearly OP is a nonempty subset of S. Let x, y ∈ OP . Then xn, ym ∈ OP ,
for some positive integers n, m. Since OP has the IFP, the elements of the form
xs1xs2x . . . xsk−1x (k ≥ n) and ys1ys2y . . . ysr−1y (r ≥ m) belong to OP i.e. an
expression contains at least n x’s or m y’s must belongs to OP . Now each term of
(x+y)m+n contains at least n x’s or m y’s. Since OP is an ideal (x+y)m+n ∈ OP .
Also (sx)n, (xs)n ∈ OP , for each s ∈ S i.e. x + y, sx, xs ∈ OP , for each s ∈ S.
Therefore OP is an ideal of S. Similarly it can be proved that NP is an ideal of S.

(ii) Suppose OP is a completely semiprime ideal of S. Clearly OP ⊆ OP . Let
a ∈ OP . Then an ∈ OP , for some positive integer n. As OP is completely
semiprime ideal of S, an ∈ OP implies a ∈ OP . Therefore OP = OP . The
converse part is obvious. By the same method, NP is a completely semiprime
ideal of S if and only if NP = NP . �

Proposition 3.13. Let S be a semiring. Then N (S) ⊆
⋂

P∈Spec(S)

OP ⊆
⋂

Q∈mSpec(S)

OQ,

where Spec(S) and mSpec(S) denote the set of all prime and minimal prime ideals of
S respectively.
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Proof. We first show that if P1 and P2 are two prime ideals of S such that P1 ⊆ P2, then
OP2 ⊆ OP1 . Let a ∈ OP2 . Then an ∈ OP2 , for some positive integer n, which implies
that anb = 0, for some b ∈ S − P2. i.e. b ∈ S − P1. So an ∈ OP1 . Thus a ∈ OP1 .

Let P be any prime ideal of S, then there exists a minimal prime ideal Q of S such
that Q ⊆ P . Therefore

⋂

P∈Spec(S)

OP ⊆
⋂

Q∈mSpec(S)

OQ.

Let a ∈ N (S). So an = 0, for some positive integer n. Therefore an ∈ OP , for
each prime ideal P of S i.e. a ∈ OP for each prime ideal P of S, which implies that
a ∈

⋂

P∈Spec(S)

OP . Hence N (S) ⊆
⋂

P∈Spec(S)

OP ⊆
⋂

Q∈mSpec(S)

OQ. �

Proposition 3.14. LetS be a semiring. ThenP(S) =
⋂

P∈Spec(S)

N(P ) =
⋂

Q∈mSpec(S)

N(Q).

Proof. Let a ∈ P(S). Then aS ⊆ P(S). Since 1 �∈ P for any prime ideal P of S, a ∈
N(P ) for every prime ideal P of S i.e. a ∈

⋂

P∈Spec(S)

N(P ). So P(S) ⊆
⋂

P∈Spec(S)

N(P ).

AlsomSpec(S) ⊆ Spec(S) implies
⋂

P∈Spec(S)

N(P ) ⊆
⋂

Q∈mSpec(S)

N(Q). AgainN(P ) ⊆

P for any prime ideal P of S. So
⋂

Q∈mSpec(S)

N(Q) ⊆
⋂

Q∈mSpec(S)

Q = P(S). Therefore

P(S) =
⋂

P∈Spec(S)

N(P ) =
⋂

Q∈mSpec(S)

N(Q). �

Theorem 3.15. For a semiring S the following statements are equivalent:

(1) S is a 2-primal semiring.

(2) P(S) is a completely semiprime ideal of S.

(3) P(S) is a left and right symmetric ideal of S.

(4) xy ∈ P(S) implies ySx ⊆ P(S) for x, y ∈ S.

Proof. (1) ⇒ (2) Let a2 ∈ P(S), where a ∈ S. Then a2 ∈ N (S) [ since P(S) = N (S)

] which implies that (a2)n = 0, for some positive integer n i.e. a2n = 0. So a ∈ N (S) =
P(S). Therefore P(S) is a completely semiprime ideal of S.

(2) ⇒ (3) Let abc ∈ P(S), where a, b, c ∈ S. Now (cab)2 = c(abc)ab ∈ P(S).
Since P(S) is completely semiprime, cab ∈ P(S). (abac)2 = aba(cab)ac ∈ P(S) ⇒
abac ∈ P(S) ⇒ (bacba)2 = bacb(abac)ba ∈ P(S) ⇒ bacba ∈ P(S) ⇒ (acb)3 =
ac(bacba)cb ∈ P(S) ⇒ acb ∈ P(S). Also (bac)2 = b(acb)ac ∈ P(S) ⇒ bac ∈
P(S). Therefore P(S) is a left and right symmetric ideal of S.
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(3) ⇒ (4) Let xy ∈ P(S), where x, y ∈ S. Suppose s ∈ S, then sxy ∈ P(S). As
P(S) is right symmetric syx ∈ P(S). Also since P(S) is left symmetric, ysx ∈ P(S).
Therefore ySx ⊆ P(S).

(4) ⇒ (1) We know P(S) ⊆ N (S). Let x ∈ N (S), then xn = 0, for some positive
integer n. If possible, let x �∈ P , for some prime ideal P of S. Then x ∈ S − P . As P is
prime, S −P is an m-system. So there exists s1 in S such that xs1x ∈ S −P . Continuing
this process there exist s2, s3, . . . , sn−1 ∈ S such that xs1xs2x . . . xsn−1x ∈ S −P . Now
by (4), xn ∈ P(S) implies xs1xs2x . . . xsn−1x ∈ P(S) i.e. xs1xs2x . . . xsn−1x ∈ P ,
a contradiction. Thus x ∈ P(S). Therefore P(S) = N (S). Hence S is a 2-primal
semiring. �

Theorem 3.16. The following statements are equivalent for a semiring S:

(i) S is a 2-primal semiring.

(ii) P(S) has the IFP .

(iii) N(P ) has the IFP for each prime ideal P of S.

(iv) N(P ) = NP for each prime ideal P of S.

(v) N(P ) = NP for each prime ideal P of S.

(vi) NP ⊆ P for each prime ideal P of S.

(vii) NP/P(S) ⊆ P/P(S) for each prime ideal P of S.

Proof. (i) ⇒ (ii) Let S be a 2-primal semiring. Let xy ∈ P(S) and s ∈ S. Then
sxy ∈ P(S). Now by Theorem 3.15(3), P(S) is a left symmetric ideal of S. So
xsy ∈ P(S). Thus xSy ⊆ P(S) i.e. P(S) has the IFP .

(ii) ⇒ (iii) Let xy ∈ N(P ), where P is a prime ideal of S. So xySb ⊆ P(S) for some
b ∈ S − P . Since P(S) has the IFP , xSySb ⊆ P(S). Therefore xSy ⊆ N(P ). Thus
N(P ) has the IFP for each prime ideal P of S.

(iii) ⇒ (i) Always P(S) ⊆ N (S). Let a ∈ N (S). Then an = 0, for some posi-
tive integer n. If possible suppose a �∈ P(S), then there exists a prime ideal P of S

such that a �∈ P . As P is prime ideal of S, S − P is an m-system of S. So there
exists s1 ∈ S such that as1a �∈ P . Continuing this process we get s2, s3, . . . , sn−1 ∈ S

such that as1as2a . . . asn−1a �∈ P . Also since N(P ) has the IFP, an = 0 ∈ N(P ) ⇒
as1as2a . . . asn−1a ∈ N(P ). As N(P ) ⊆ P , as1as2a . . . asn−1a ∈ P , a contradiction.
So a ∈ P(S). Hence P(S) = N (S) i.e. S is a 2-primal semiring.

(i) ⇒ (iv) Let P be a prime ideal of S and x ∈ N(P ). Then there exists y ∈ S −P such
that xSy ⊆ P(S). Since S contains the identity element xy ∈ P(S) i.e. x ∈ NP ⊆ NP .
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So N(P ) ⊆ NP . Conversely, let a ∈ NP . Then an ∈ NP , for some positive integer
n. So there exists b ∈ S − P such that anb ⊆ P(S) i.e. an−1(ab) ∈ P(S). Therefore
an−1(ab)b ∈ P(S), as P(S) is an ideal of S.

⇒ an−1b(ab)P(S), as P(S) is right symmetric by Theorem 3.15(3),
⇒ an−2(ab)2P(S).
Continuing this process we get (ab)n ∈ P(S). Since S is a 2-primal semiring, by
Theorem 3.15(2), P(S) is a completely semiprime semiring. So ab ∈ P(S). Now
by (ii), P(S) has the IFP. Therefore aSb ⊆ P(S) which implies that a ∈ N(P ). So
NP ⊆ N(P ). Hence N(P ) = NP for each prime ideal P of S.

(iv) ⇒ (v) Follows from the fact N(P ) ⊆ NP ⊆ NP .

(v) ⇒ (vi) As N(P ) ⊆ P .

(vi) ⇒ (vii) Suppose S = S/P(S) and P = P/P(S) for every prime ideal P of S.
Let a ∈ NP . So there exists b ∈ S − P such that ab ∈ P(S) i.e. (a/P(S))(b/P(S)) =
(ab)/P(S) = 0/P(S). Since P(S) is a k-ideal of S, ab ∈ P(S). So a ∈ NP . As
NP ⊆ P , a ∈ P i.e. a ∈ P . Thus NP ⊆ P .

(vii) ⇒ (i) We first prove that if S/P(S) is reduced, then S is a 2-primal semiring.
Now P(S) ⊆ N (S). To prove the reverse inclusion, let a ∈ N (S). Then an = 0, for
some positive integer n. So a/P(S) is a nilpotent element of S/P(S) . Since S/P(S)

is reduced, it has no nonzero nilpotent element. So a/P(S) = 0/P(S). As P(S) is a
k-ideal of S, a ∈ P(S) i.e. N (S) ⊆ P(S).

We now prove that S = S/P(S) is a reduced semiring. If possible let S be not a
reduced semiring. Then there exists a nonzero element a ∈ S such that a2 = 0. Since
a �= 0, a �∈ P(S). So there exists a prime ideal P of S such that a �∈ P . Thus a �∈ P i.e.
a ∈ S − P and a2 = 0, which implies that a ∈ NP ⊆ P , a contradiction. Therefore S

is a reduced semiring and hence S is a 2-primal semiring. �

Theorem 3.17. The following statements are equivalent for a semiring S:

(i) S is a 2-primal semiring.

(ii) N(P ) is a completely semiprime ideal of S for each prime ideal P of S.

(iii) N(P ) is a left and right symmetric ideal of S for each prime ideal P of S.

(iv) xy ∈ N(P ) implies ySx ⊆ N(P ) for x, y ∈ S and for each prime ideal P of S.

Proof. (i) ⇒ (ii): Let S be a 2-primal semiring. Then by Theorem 3.16(v), NP = N(P )

for each prime ideal P of S. We now show that NP = NP for each prime ideal P of S.
Let a ∈ NP . So an ∈ NP for some positive integer n, which implies that anb ∈ P(S) for
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some b ∈ S −P . Since S is a 2-primal semiring, by Theorem 3.16, P(S) has the IFP and
hence (ab)n ∈ P(S). Also by Theorem 3.15, P(S) is a completely semiprime semiring.
Thus ab ∈ P(S). So a ∈ NP . Therefore N(P ) = NP . We know N(P ) ⊆ NP ⊆ NP .
Thus N(P ) = NP = NP for each prime ideal P of S. So by Proposition 3.12(ii), N(P )

is a completely semiprime ideal of S for each prime ideal P of S.

(ii) ⇒ (iii) Let xyz ∈ N(P ), where x, y, z ∈ S. Now (zxy)2 = z(xyz)xy ∈ N(P ).
Since N(P ) is completely semiprime, zxy ∈ N(P ). (xyxz)2 = xyx(zxy)xz ∈
N(P ) ⇒ xyxz ∈ N(P ) ⇒ (yxzyx)2 = yxzy(xyxz)yx ∈ N(P ) ⇒ yxzyx ∈
N(P ) ⇒ (xzy)3 = xz(yxzyx)zy ∈ N(P ) ⇒ xzy ∈ N(P ). Also (yxz)2 = y(xzy)xz ∈
N(P ) ⇒ yxz ∈ N(P ). Therefore N(P ) is a left and right symmetric ideal of S.

(iii) ⇒ (iv) Let xy ∈ N(P ), where x, y ∈ S. Since N(P ) is an ideal of S, for each
s ∈ S, sxy ∈ N(P ). As N(P ) is right symmetric syx ∈ N(P ). Also since N(P ) is left
symmetric, ysx ∈ N(P ). Therefore ySx ⊆ N(P ).

(iv) ⇒ (i) We know P(S) ⊆ N (S). Let x ∈ N (S), then xn = 0, for some pos-
itive integer n. If possible, let x �∈ P(S). Then x �∈ P for some prime ideal P of
S. Then x ∈ S − P . As P is prime, S − P is an m-system. So there exists s1 in
S such that xs1x ∈ S − P . Continuing this process there exist s2, s3, . . . , sn−1 ∈ S

such that xs1xs2x . . . xsn−1x ∈ S − P . Now by (iv), xn = 0 ∈ N(P ) implies
xs1xs2x . . . xsn−1x ∈ N(P ) i.e. xs1xs2x . . . xsn−1x ∈ P , a contradiction. Thus
x ∈ P(S). Therefore P(S) = N (S). Hence S is a 2-primal semiring. �

Theorem 3.18. The following statements are equivalent for a semiring:

(i) S is a 2-primal semiring.

(ii) OP ⊆ P for each prime ideal P of S.

(iii) N (S) =
⋂

P∈Spec(S)

OP = P(S).

Proof. (i) ⇒ (ii): Let a ∈ OP . Then there exists a positive integer n such that an ∈ OP .
So anb = 0 i.e. anb ∈ P(S), for some b ∈ S − P , which implies that an ∈ NP i.e.
a ∈ NP . So OP ⊆ NP for each prime ideal P of S. Also by Theorem 3.16(iv),
NP = N(P ) ⊆ P for each prime ideal P of S. Thus OP ⊆ P for each prime ideal P

of S.

(ii) ⇒ (iii): Since OP ⊆ P for each prime ideal P of S,
⋂

P∈Spec(S)

OP ⊆
⋂

P∈Spec(S)

P =

P(S). Now by Proposition 3.13, N (S) ⊆
⋂

P∈Spec(S)

OP ⊆ P(S). Also P(S) ⊆ N (S).



 M. L. Das

Therefore N (S) =
⋂

P∈Spec(S)

OP = P(S).

(iii) ⇒ (i): Obvious. �

Theorem 3.19. If OP = P for each prime ideal P of a semiring S, then

(i) S is a 2-primal semiring.

(ii) OP = N(P ) for each prime ideal P of S.

(iii) Every prime ideal of S is minimal and completely prime.

Proof. (i) Since OP = P , OP ⊆ P . Hence by the Theorem 3.18(iii), N (S) = P(S)

i.e. S is 2-primal.

(ii) Since N(P ) ⊆ P and OP = P for each prime ideal P of S, N(P ) ⊆ OP for each
prime ideal P of S. Now by Theorem 3.16(iv), N(P ) = NP for each prime ideal P of
S. Also OP ⊆ NP for each prime ideal P of S. Thus OP ⊆ N(P ) for each prime ideal
P of S. Therefore OP = N(P ) for each prime ideal P of S.

(iii) Let P be a prime ideal of S. From (ii) and the given condition OP = P , we get
N(P ) = P for each prime ideal P of S. If Q is a minimal prime ideal of S contained in
P , then N(P ) ⊆ N(Q) ⊆ Q ⊆ P = N(P ). Thus P = Q i.e. P is a minimal prime
ideal of S.

Let xy ∈ P = N(P ) and x �∈ P . Since xy ∈ N(P ), there exists b ∈ S −P such that
(xy)Sb ⊆ P(S) i.e. x(ySb) ⊆ P(S). Since P(S) has the IFP (by Theorem 3.16(ii)),
xS(ySb) ⊆ P(S) ⊆ P . As x �∈ P , ySb ⊆ P . Again since b �∈ P , y ∈ P . So either
x ∈ P or y ∈ P . Hence P is a completely prime ideal of S. �

Proposition 3.20. If S is a 2-primal semiring and OP = P for some prime ideal P , then
P is a completely prime ideal of S, in particular OP has the IFP.

Proof. Let xy ∈ P = OP . If possible, let x �∈ P . So there exists b ∈ S − P such
that (xy)b = 0. Since S is a 2-primal semiring, by Theorem 3.16, P(S) has the IFP.
Therefore (xSy)Sb ⊆ P(S) ⊆ P . Since P is prime and x �∈ P , ySb ⊆ P . Again since
b �∈ P , y ∈ P . Therefore either x ∈ P or y ∈ P . Hence P is a completely prime ideal
of S. �

Proposition 3.21. Let S be a semiring. If O(P ) has the IFP for each minimal prime
ideal P of S, then S is a 2-primal semiring.

Proof. Suppose O(P ) has the IFP for each minimal prime ideal P of S. To prove S

is a 2-primal semiring, it is sufficient to show that N (S) ⊆ P(S). Let a ∈ N (S).
Then an = 0, for some positive integer n. If possible suppose a �∈ P(S), then there
exists a prime ideal P of S such that a �∈ P . As P is a prime ideal of S, S − P
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is an m-system of S. So there exists s1 ∈ S such that as1a �∈ P . Continuing this
process, we get s2, s3, . . . , sn−1 ∈ S such that as1as2a . . . asn−1a �∈ P . Also since
O(P ) has the IFP, an = 0 ∈ O(P ) ⇒ as1as2a . . . asn−1a ∈ O(P ). As O(P ) ⊆ P ,
as1as2a . . . asn−1a ∈ P , a contradiction. So a ∈ P(S). Hence P(S) = N (S) i.e. S is
a 2-primal semiring. �

We now prove that if OP is a prime ideal for each minimal prime ideal P of S, then
the converse of the Proposition 3.21 is true.

Proposition 3.22. Assume that OP be a prime ideal of S for each minimal prime ideal
P of S. Then O(P ) has the IFP, for each minimal prime ideal P of S if and only if S is
a 2-primal semiring.

Proof. Let S be a 2-primal semiring and P be a minimal prime ideal of S such that OP

is a prime ideal of S. So OP S ⊆ OP and hence OP Sb = 0, for some b ∈ S − P . Thus
OP Sb ⊆ P . As P is a prime ideal of S and b �∈ P , OP ⊆ P . Again since OP is a
prime ideal of S and P is a minimal prime ideal of S, OP = P . We now prove that
O(P ) = OP . Let x ∈ O(P ). Then there exists y ∈ S − P such that xSy = 0. Since S

contains the identity element, xy = 0. So x ∈ OP i.e. O(P ) ⊆ OP . Again, let a ∈ OP .
So aS ⊆ OP and there exists b ∈ S − P such that aSb = 0. Thus a ∈ O(P ). Hence
OP ⊆ O(P ). Therefore O(P ) = OP = P , for each minimal prime ideal P of S. So by
Proposition 3.20, O(P ) has the IFP, for each minimal prime ideal P of S. The converse
part follows from the Proposition 3.21. �

Theorem 3.23. Let OP be a prime ideal of S for each minimal prime ideal of S. Then
the following statements are equivalent:

(i) S is a 2-primal semiring.

(ii) OP has the IFP for each minimal prime ideal P of S.

(iii) OP is a completely semiprime ideal for each minimal prime ideal P of S.

(iv) OP is a left and right symmetric ideal for each minimal prime ideal P of S.

(v) xy ∈ OP implies ySx ⊆ OP for x, y ∈ S and for each minimal prime ideal P of
S.

Proof. (i) ⇒ (ii) Since OP is an ideal of S, OP S ⊆ OP . So OP Sb = 0, for some
b ∈ S − P . Thus OP Sb ⊆ P . As P is a prime ideal of S and b �∈ P , OP ⊆ P . Again
since OP is a prime ideal of S and P is a minimal prime ideal of S, OP = P . Therefore
by Proposition 3.20, OP has the IFP for each minimal prime ideal P of S.

(ii) ⇒ (iii) Let x2 ∈ OP . Since by (ii) OP has the IFP, xSx ⊆ OP . As OP is a prime
ideal of S, x ∈ OP . Hence OP is a completely semiprime ideal for each minimal prime
ideal P of S.
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The proofs of (iii) ⇒ (iv) and (iv) ⇒ (v) are similar to the proofs of (2) ⇒ (3)

and (3) ⇒ (4) of Theorem 3.15 respectively and so we omit it.

(v) ⇒ (i) Let xy ∈ P(S). Then xy ∈ P for each minimal prime ideal P of S. Since
OP is a prime ideal of S for each minimal prime ideal of S, OP = P , for each minimal
prime ideal of S. Thus xy ∈ OP for each minimal prime ideal P of S. So by (v),
ySx ⊆ OP = P for each minimal prime ideal P of S. Therefore ySx ⊆ P(S). Hence
by (4) ⇒ (1) of Theorem 3.15, S is a 2-primal semiring. �

Theorem 3.24. Let OP be a prime ideal for each minimal prime ideal P of S. Then the
following statements are equivalent:

(i) S is a 2-primal semiring.

(ii) O(P ) has the IFP for each minimal prime ideal P of S.

(iii) Every minimal prime ideal of S is a completely prime ideal of S.

Proof. (i) ⇒ (ii) Follows from the Proposition 3.22.

(ii) ⇒ (iii) Let P be a minimal prime ideal of S. Then OP is a prime ideal of S and
O(P ) has the IFP. Then by the proof of the Proposition 3.22, we get O(P ) = OP = P .
Suppose xy ∈ P . Since O(P ) has the IFP, xSy ⊆ O(P ) = P . Therefore either x ∈ P

or y ∈ P .

(iii) ⇒ (i) Since P(S) is the intersection of all minimal prime ideals of S and by (iii)
each minimal prime ideal of S is a completely prime ideal of S and hence P(S) is the
intersection of completely semiprime ideal i.e. P(S) is a completely semiprime ideal of
S. Therefore by Theorem 3.15, S is a 2-primal semiring. �

Proposition 3.25. Let OP be a prime ideal of S for every minimal prime ideal P of S.
Then S is a 2-primal semiring if and only if P = O(P ) = OP for each minimal prime
ideal P of S.

Proof. Suppose S is a 2-primal semiring. Since OP is a prime ideal for each minimal
prime ideal P of S, by the proof of the Proposition 3.22, P = O(P ) = OP . Therefore by
Proposition 3.20, OP = O(P ) is a completely prime and hence a completely semiprime
ideal of S. Hence by Proposition 3.12(ii), OP = OP i.e. P = O(P ) = OP .

Conversely, suppose P = O(P ) = OP for each minimal prime ideal P of S. By
Proposition 3.13, N (S) ⊆

⋂

P∈Spec(S)

OP ⊆
⋂

Q∈mSpec(S)

OQ =
⋂

Q∈mSpec(S)

Q = P(S).

Also P(S) ⊆ N (S). So P(S) = N (S). Hence S is a 2-primal semiring. �

Proposition 3.26. If OP has the IFP for each minimal prime ideal P of S, then OP ⊆ P

for each minimal prime ideal P of S if and only if S is a 2-primal semiring.
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Proof. Suppose OP ⊆ P for each minimal prime ideal P of S. Let a ∈ N (S). Then
an = 0, for some positive integer n such that an = 0. If possible let a �∈ P(S). So there
exists a prime ideal P of S such that a �∈ P . Since P is a prime ideal of S, S −P is a m-
system and therefore there exist s1, s2, . . . , sn−1 ∈ S such that as1as2a . . . sn−1a �∈ P .
Again since OP has the IFP and an = 0 ∈ OP , as1as2a . . . sn−1a ∈ OP . Since
OP ⊆ P , as1as2a . . . sn−1a ∈ P , a contradiction. So a ∈ P(S). Hence N (S) ⊆ P(S).
Also P(S) ⊆ N (S). Thus P(S) ⊆ N (S) i.e. S is a 2-primal semiring.

Conversely, suppose S is a 2-primal semiring and P is a minimal ideal of S. Let
a ∈ OP . Then there exists b ∈ S − P such that ab = 0. So ab ∈ P(S). Since S is a
2-primal semiring, by Theorem 3.16, P(S) has the IFP. So aSb ⊆ P(S) which implies
that aSb ⊆ P . Since P is a prime ideal of S and b �∈ P , a ∈ P . Hence OP ⊆ P . �
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