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Abstract

In this paper we introduce the notion of 2-primal semiring similar to the notion in
ring. We also give some characterizations of 2-primal semirings by using prime
ideals and insertion of factors property.
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1. Introduction

The study of 2-primal rings was inaugurated by G. Shin [5] (although the name “2-
primal" was not coined at that time). Also he proved that a ring is 2-primal if and only
if each of its minimal prime ideals is completely prime. The name “2-primal" was first
introduced by Birkenmeier-Heatherly-Lee in [4]. Essential properties of 2-primal rings
are developed in [1], [2] and [7].

In ths paper we introduce the concept of 2-primal semirings. For a prime ideal P
of a semiring S, we define the subsets O(P), Op, N(P), Np, O(P), N(P), Op and
N p of S as in ring and using these subsets we characterize 2-primal semirings. Also we
generalise many results of 2-primal rings in 2-primal semirings. Some earlier works on
semirings of the author may be found in [9], [10], [11] and [12].

2. Preliminaries

Definition 2.1. A nonempty set S is said to form a semiring with respect to two binary
compositions, addition (4) and multiplication (-) defined on it, if the following conditions
are satisfied.
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(1) (S, +) is a commutative semigroup with zero,
(2) (S, ) is a semigroup,

(3) for any three elements a, b, c € S
the left distributive lawa - (b+c¢) =a -b +a - c and
the right distributive law (b 4+ ¢) -a = b - a + ¢ - a both hold and

4) s-0=0-s=0foralls € S.
If S contains the multiplicative identity 1, then S is called a semiring with identity.

Throughout this paper we assume a semiring S means a semiring with identity.

Definition 2.2. A nonempty subset / of a semiring S is called a left ideal of § if (i)
a,belimpliesa+beland(ii)a e l,s € Simplies s.a € I.

Similarly we can define right ideal of a semiring. A nonempty subset / of a semiring
S is an ideal if it is a left ideal as well as a right ideal of S.

Definition 2.3. [3] Anideal / of a semiring S is called a k-ideal ifa +b € I anda € |
implies b € I.

Definition 2.4. [6] A proper ideal / of a semiring S is called a prime ideal if AB C [
implies either A € I or B C I, where A and B are ideals of S.

Definition 2.5. [6] A properideal / of a semiring S is called a semiprime ideal if A? c/
implies A C I, where A is an ideal of S.

Definition 2.6. A semiring S is called a prime semiring if {0} is a prime ideal of S.

Definition 2.7. A semiring S is called a semiprime semiring if {0} is a semiprime ideal
of S.

Definition 2.8. An ideal / of a semiring S is said to be completely prime if ab € [
impliesa €  orb € I fora,b € §.

Definition 2.9. An ideal I of a semiring S is said to be completely semiprime if a> € I
impliesa € I fora € §.

Definition 2.10. A subset M of a semiring S is said to be m-system if for any a, b € M,
there exists s € S such that asb € M.

Definition 2.11. [6] Let / be a proper ideal of a semiring S. Then the congruence on S,
denoted by p; and defined by sp;s” if and only if s + a; = s’ + a» for some ay, ap € 1,
is called the Bourne congruence on S defined by the ideal /.

We denote the Bourne congruence (py) class of an element r of S by r/p; or simply
by r/I and denote the set of all such congruence classes of S by S/p; or simply by S/1.
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It should be noted that for any s € S and for any proper ideal I of S, s/I is not
necessarily equal tos + 1 = {s +a : a € I} but surely contains it.

Definition 2.12. [6] For any proper ideal / of S if the Bourne congruence p;, defined
by I, is proper i.e. 0/I # S then we define the addition and multiplication on S/ by
a/l +b/1 = (a+ b)/I and (a/I)(b/I) = (ab)/I for all a,b € S. With these two
operations S/ forms a semiring and is called the Bourne factor semiring or simply the
factor semiring.

Definition 2.13. Let A be a non-empty subset of a semiring S. Right annihilator of A
in S, denoted by anng(A), is defined by anng(A) = {s € § : As = 0}.

If A = {a}, then we denote annr(A) by anng(a).
Analogously we can define left annihilator (anny (A)) of A. Annihilator of a set A
is denoted by ann(A) which is left as well as right annihilator of A.

Remark 2.14. If S is a semiring with absorbing zero then anng(A) is a right ideal of S
and anny (A) is a left ideal of S. If A is an ideal of S then both annihilators are ideals
of S.

3. 2-primal semiring

Definition 3.1. A semiring S is said to be 2-primal semiring if P(S) = N (S), where
P(S) denotes the prime radical of S i.e. intersection of all prime ideals of S and N'(S)
denotes the set of all nilpotent elements of S.

Definition 3.2. A semiring S is said to be reduced if it has no nonzero nilpotent elements.
Proposition 3.3. Every reduced semiring is 2-primal.
Proof. Since for any semiring S, P(S) € N (S), reduced semirings are 2-primal. |

Definition 3.4. Anideal / of a semiring S is said to have the insertion of factors property
or simply I FP if ab € I impliesaSb C I fora,b € S.

Definition 3.5. Anideal / of a semiring S is said to be right (left) symmetric if abc € 1
implies acb € I (respectively bac € I) fora, b, c € S.

Definition 3.6. A semiring S is said to be satisfy (SI) if for each a € S, anng(a) is an
ideal of S.

Lemma 3.7. For any semiring S the following statements are equivalent:
(i) S satisfies (SI).

(11) Foranya, b € S, ab = 0 implies aSb = 0.
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Proof. (i) = (ii) Letab = 0,fora,b € S. Then b € anng(a). As anng(a) is an ideal
of S, Sb C anng(a). SoaSb = 0.

(ii) = (i) Obviously anng(a) is aright ideal of S foreacha € S. Letb € anng(a)
and s € S. Then ab = 0 and by (ii), aSh = 0. So S(anng(a)) € anng(a). Therefore
anng(a) is an ideal of S for each a € §. |

Proposition 3.8. If S satisfies (SI), then § is a 2-primal semiring.

Proof. We know P(S) € N(S). Suppose a € N(S), then a” = 0, for some positive
integer n. If possible let a ¢ P(S). Then a ¢ P for some prime ideal P of S i.e.
a € §S— P. As P is prime, S — P is an m-system. So there exists s; € S such
that asja € S — P. Again since asja, a € S — P, there exists s, € § such that
asiasra € S — P. Continuing this process, there exist s3, 54, ..., s,—1 In S such that
asyasya, ...,as,—1a € S — P. Since § satisfies (SI), by Lemma 3.7, a" = 0 i.e.
aad" '=0 implies asia" ' =0 = (asja)a"? =0 = (as1a)s2a" > =0 [by Lemma
3.7]. Continuing this process, we get asjasza...as,—1a = 0 € P, a contradiction.
Thus a € P(S). So P(S) = N(S) i.e. S is a 2-primal semiring. [ |

Definition 3.9. For a prime ideal P of a semiring S, we define
OP)={xeS:xSy=0forsomeyeS— P}
O(P) = {x € §: x" € O(P) for some positive integer n}.

Op={xeS:xy=0forsomeyeS§— P}.

Op ={x € S:x" € Op for some positive integer n}.
N(P)={xe S:xSy CP(S) forsome y € § — P}.
N(P) ={x € S: x" € N(P) for some positive integer n}.
Np={xeS:xyeP(S) forsomeye S — P}

Np ={x € §:x" € Np for some positive integer n}.

Now O(P) and N (P) are subsets of P, O(P) € Op C Opand N(P) C Np C Np
for each prime ideal P of S.

Proposition 3.10. Let S be a semiring and P be a prime ideal of S. Then
OP)={xeS:xS<y>=0forsomey e S— P}and

NP)={xeS: xS <y>CP(S) forsomey € § — P}, where < y > denotes the
ideal of S generated by y.

Proof. Let A ={x e S :x5S <y >=0forsomey € S — P}. Clearly A € O(P).
Suppose x € O(P). Then xSy = 0 for some y € § — P. Now elements of < y > are
m

of the form s’y + ys” +ny + Z siys;, where s, s”, s;, s\ € S and n is a non-negative

i=1
integer. So xS < y >= 0. Therefore x € A. Thus O(P) = A.
As P(S) is an ideal of S, the proof of the second part is similar as first part. [

Proposition 3.11. Let S be a semiring and P be a prime ideal of S. Then O(P) and
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N (P) are k-ideals of S.

Proof. O(P) is a nonempty subset of S, since 0 € O(P). Let x1,x3 € O(P). Then
there exist y; and y, in S — P suchthatx; S < y; >=0and xS < y; >= 0. Since P isa
prime ideal of S, S — P isam-system. So thereexistss € S suchthat y;sy, € S—P. Now
< y1sy2 >C< y; > and < y;sy> >C< yp >. Therefore (x; + x2)S < y1sy, >= 0.
Thus x; + x» € O(P).

Let x € O(P). Then there exists y € § — P such that xS < y >= 0. Therefore
SxS<y>=0and x5S <y >C xS <y >=0. Thus Sx, xS € O(P). So O(P) is
an ideal of S.

Let x; + x2 € O(P) and x; € O(P). Then there exist y; and y; in § — P such that
(x1 +x2)S <y >=0and x;S < y» >= 0. Since S — P is an m-system, there exists
s such that y;sy; € S — P. Now < yisy» >C< y; > and < y;sy; >C< y; >. So
(x1 +x2)§ < yisy2 >= 0 and x1S < yisy, >= 0. Therefore x5 < yisy, >= 0.
Thus x» € O(P). Hence O(P) is a k-ideal of S.

Since P(S) is a k-ideal of S, by similar argument we can prove that N (P) is a k-ideal
of S. |

Proposition 3.12. Let S be a semiring and P be a prime ideal of S such that Op and
Np are ideals of S.

(i) If Op (resp. Np) has the IFP, then Op (resp. N p) is an ideal of S.

(i) Op (resp. Np ) is a completely semiprime ideal of S if and only if Op = Op
(resp. Np = Np).

Proof.

(i) Clearly Op is a nonempty subset of S. Let x,y € Op. Then x",y" € Op,
for some positive integers n, m. Since Op has the IFP, the elements of the form
XS1X8$2X ... XSk—1Xx (k > n)and ys1ys2y...ys,—1y (r > m) belong to Op i.e. an
expression contains at least n x’s or m y’s must belongs to O p. Now each term of
(x4 y)™*" contains at least n x’s orm y’s. Since Op is anideal (x +y)" 1" € Op.
Also (sx)", (xs)" € Op, foreachs € Si.e. x +y,sx,xs € Op, foreachs € .
Therefore O p is an ideal of S. Similarly it can be proved that N p is an ideal of S.

(ii) Suppose Op is a completely semiprime ideal of S. Clearly Op € Op. Let
a € Op. Then a" € Op, for some positive integer n. As Op is completely
semiprime ideal of S, a" € Op implies a € Op. Therefore Op = Op. The
converse part is obvious. By the same method, Np is a completely semiprime
ideal of S if and only if Np = Np. |

Proposition 3.13. Let S be a semiring. Then NV (S) C ﬂ Op C ﬂ Oy,

PeSpec(S) QemSpec(S)
where Spec(S) and mSpec(S) denote the set of all prime and minimal prime ideals of
S respectively.
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Proof. We first show that if Py and P, are two prime ideals of S such that P; C P,, then
6132 - 5p1. Leta € 51:2. Then a" € Op,, for some positive integer n, which implies
that a"b = 0, for some b € S — P. i.e. b€ S — P;. Soa" € Op,. Thusa € Op,.

Let P be any prime ideal of S, then there exists a minimal prime ideal Q of S such
that Q9 C P. Therefore ﬂ OpC ﬂ 5Q.

PeSpec(S) QemSpec(S)

Let a € N(S). So a”™ = 0, for some positive integer n. Therefore a”" € Op, for

each prime ideal P of S i.e. a € Op for each prime ideal P of S, which implies that

ac ﬂ O p. Hence N'(S) C ﬂ Op C ﬂ Oyp. [ |
PeSpec(S) PeSpec(S) QemSpec(S)
Proposition3.14. Let Sbeasemiring. ThenP(S) = () N(P)= () N(Q.
PeSpec(S) QemSpec(S)

Proof. Leta € P(S). ThenaS C P(S). Since 1 € P for any prime ideal P of S, a €
N (P) forevery primeideal P of Si.e. a € m N(P). SoP(S) C m N(P).

PeSpec(S) PeSpec(S)
AlsomSpec(S) C Spec(S)implies (1) N(P)S [ N(Q). AgainN(P) C
PeSpec(S) QemSpec(S)
P for any prime ideal P of S. So ﬂ N(Q) C ﬂ Q = P(S). Therefore
QemSpec(S) QemSpec(S)
PS= () NP= () NO. |

PeSpec(S) QemSpec(S)
Theorem 3.15. For a semiring S the following statements are equivalent:
(1) S is a2-primal semiring.
(2) P(S) is a completely semiprime ideal of S.
(3) P(S) is a left and right symmetric ideal of S.

(4) xy € P(S) implies ySx € P(S) forx,y € S.

Proof. (1) = (2) Leta® € P(S), where a € S. Then a? € N(S) [ since P(S) = N(S)
] which implies that (a%)" = 0, for some positive integer ni.e. a®" = 0. Soa € N'(S) =
P(S). Therefore P(S) is a completely semiprime ideal of S.

(2) = (3) Let abc € P(S), where a,b,c € S. Now (cab)® = c(abc)ab € P(S).
Since P(S) is completely semiprime, cab € P(S). (abac)? = aba(cab)ac € P(S) =
abac € P(S) = (bacba)* = bach(abac)ba € P(S) = bacba € P(S) = (ach)® =
ac(bacba)cb € P(S) = acb € P(S). Also (bac)2 = b(acb)ac € P(S) = bac €
P(S). Therefore P(S) is a left and right symmetric ideal of §.
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(3) = (4) Let xy € P(S), where x,y € S. Suppose s € S, then sxy € P(S). As
P(S) is right symmetric syx € P(S). Also since P(S) is left symmetric, ysx € P(S).
Therefore ySx C P(S).

(4) = (1) We know P(S) € N(S). Let x € N(S), then x" = 0, for some positive
integer n. If possible, let x ¢ P, for some prime ideal P of S. Thenx € S — P. As P is
prime, S — P is an m-system. So there exists s1 in S such that xsjx € § — P. Continuing
this process there exist 52, 53, ..., S,—1 € Ssuchthatxsixsyx...xs,—1x € §— P. Now
by (4), x" € P(S) implies xs1x52x ... x5,_1x € P(S) i.e. x$1x82x...x5,_1x € P,
a contradiction. Thus x € P(S). Therefore P(S) = N(S). Hence § is a 2-primal
semiring. |

Theorem 3.16. The following statements are equivalent for a semiring S:
(1) Sisa?2-primal semiring.
(i1) P(S) hasthe IFP.
(iii) N(P) has the I F' P for each prime ideal P of S.
(iv) N(P) = N p for each prime ideal P of S.
(v) N(P) = Np for each prime ideal P of S.
(vi) Np C P for each prime ideal P of S.
(vii) Np/p(s) © P/P(S) for each prime ideal P of S.

Proof. (i) = (ii) Let S be a 2-primal semiring. Let xy € P(S) and s € S. Then
sxy € P(S). Now by Theorem 3.15(3), P(S) is a left symmetric ideal of S. So
xsy € P(S). Thus xSy € P(S) i.e. P(S) hasthe [ FP.

(ii) = (iii) Letxy € N(P), where P is a prime ideal of S. So xySb C P(S) for some
b e S — P. Since P(S) hasthe I FP, xSySb C P(S). Therefore xSy € N(P). Thus
N (P) has the I F P for each prime ideal P of S.

(iii) = (i) Always P(S) € N(S). Leta € N(S). Then a" = 0, for some posi-
tive integer n. If possible suppose a ¢ P(S), then there exists a prime ideal P of S
such that a ¢ P. As P is prime ideal of §, § — P is an m-system of S. So there
exists s1 € § such that asja ¢ P. Continuing this process we get s2, 53, ...,8,—-1 € S
such that asjas»>a ...as,_1a ¢ P. Also since N(P) has the IFP, a" =0 € N(P) =
asiasya...asp,_1a € N(P). As N(P) C P,asjasza...as,_1a € P, acontradiction.
Soa € P(S). Hence P(S) = N(S) i.e. S is a 2-primal semiring.

(i) = (iv) Let P be a prime ideal of S and x € N (P). Then there exists y € § — P such
that xSy C P(S). Since S contains the identity element xy € P(S)i.e. x € Np C Np.



M. L. Das

So N(P) C Np. Conversely, let a € Np. Then a" € Np, for some positive integer
n. So there exists b € S — P such that a"b € P(S) i.e. a" ' (ab) € P(S). Therefore
a"“(ab)b € P(S), as P(S) is an ideal of S.

= a”_lb(ab)P(S), as P(S) is right symmetric by Theorem 3.15(3),

= a""2(ab)*P(S).

Continuing this process we get (ab)" € P(S). Since S is a 2-primal semiring, by
Theorem 3.15(2), P(S) is a completely semiprime semiring. So ab € P(S). Now
by (i), P(S) has the IFP. Therefore aSb < P(S) which implies that a € N(P). So
Np C N(P). Hence N(P) = N p for each prime ideal P of S.

(iv) = (v) Follows from the fact N(P) € Np C Np.

(v) = (vi) As N(P) C P.

(vi) = (vii) Suppose S = S/P(S) and P = P/P(S) for every prime ideal P of S.
Leta € Np. So there exists b e S— Psuchthatab € P(S) ie. (a/P(S))(b/P(S)) =

(ab)/P(S) = 0/P(S). Since P(S) is a k-ideal of S, ab € P(S). Soa € Np. As
Np C P,ac Pie.a€ P. Thus N5 C P.

(vii) = (i) We first prove that if S/P(S) is reduced, then S is a 2-primal semiring.
Now P(S) € N(S). To prove the reverse inclusion, let a € N'(S). Then a" = 0, for
some positive integer n. So a/P(S) is a nilpotent element of S/P(S) . Since S/P(S)
is reduced, it has no nonzero nilpotent element. So a/P(S) = 0/P(S). As P(S) is a
k-ideal of S, a € P(S) i.e. N(S) C P(S).

We now prove that S = S/P(S) is a reduced semiring. If possible let S be not a
reduced semiring. Then there exists a nonzero element @ € S such that @ a* = 0. Since
a#0,a £ P(S). So there exists a prime ideal P of S such thata ¢ P. Thusa & P i.e.
@ e S— Panda’ =0, which implies thata € Ny C P, a contradiction. Therefore S
is a reduced semiring and hence § is a 2-primal semiring. [ |

Theorem 3.17. The following statements are equivalent for a semiring S:
(1) Sisa?2-primal semiring.
(i1) N(P) is a completely semiprime ideal of S for each prime ideal P of S.
(iii)) N(P) is a left and right symmetric ideal of S for each prime ideal P of S.

(iv) xy € N(P) implies ySx € N(P) for x, y € § and for each prime ideal P of S.

Proof. (i) = (ii): Let S be a2-primal semiring. Then by Theorem 3.16(v), Np = N (P)
for each prime ideal P of S. We now show that N p = Np for each prime ideal P of S.
Leta € Np. Soa” € Np for some positive integer n, which implies that a” b € P(S) for
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some b € S — P. Since § is a 2-primal semiring, by Theorem 3.16, P(S) has the IFP and
hence (ab)" € P(S). Also by Theorem 3.15, P(S) is a completely semiprime semiring.
Thus ab € P(S). Soa € Np. Therefore N(P) = Np. We know N(P) € Np C Np.
Thus N(P) = Np = N p for each prime ideal P of S. So by Proposition 3.12(ii), N (P)
is a completely semiprime ideal of S for each prime ideal P of S.

(ii) = (iii) Let xyz € N(P), where x, y,z € S. Now (zxy)2 = z(xyz)xy € N(P).
Since N(P) is completely semiprime, zxy € N(P). (xyxz)? = xyx(zxy)xz €
N(P) = xyxz € N(P) = (yxzyx)2 = yxzy(xyxz)yx € N(P) = yxzyx €
N(P) = (xzy)* = xz(yxzyx)zy € N(P) = xzy € N(P). Also (yxz)* = y(xzy)xz €
N(P) = yxz € N(P). Therefore N(P) is a left and right symmetric ideal of S.

(iii) = (iv) Let xy € N(P), where x, y € S. Since N(P) is an ideal of §, for each
s € S,sxy € N(P). As N(P) is right symmetric syx € N(P). Also since N (P) is left
symmetric, ysx € N(P). Therefore ySx C N(P).

(iv) = (i) We know P(S) € N(S). Let x € N(S), then x" = 0, for some pos-
itive integer n. If possible, let x ¢ P(S). Then x ¢ P for some prime ideal P of
S. Thenx € S — P. As P is prime, S — P is an m-system. So there exists s; in
S such that xs;x € § — P. Continuing this process there exist s, 53, ..., S,—1 € S
such that xsjxspx...xs,—1x € § — P. Now by (iv), x" = 0 € N(P) implies
XS1X82X ... xS,—_1x € N(P) ie. xsixs2x...xs,_1x € P, a contradiction. Thus
x € P(S). Therefore P(S) = N (S). Hence S is a 2-primal semiring. |

Theorem 3.18. The following statements are equivalent for a semiring:
(i) S is a 2-primal semiring.

(ii) Op C P for each prime ideal P of S.

(iii) N(S) = ﬂ Op =P(S).

PeSpec(S)

Proof. (i) = (ii): Leta € O p. Then there exists a positive integer n such thata” € Op.
Soa"b = 0i.e. a"b € P(S), for some b € S — P, which implies that a" € Np i.e.
a € Np. So Op C Np for each prime ideal P of S. Also by Theorem 3.16(iv),
Np = N(P) C P for each prime ideal P of S. Thus Op C P for each prime ideal P
of S.

(ii) = (iii): Since Op C P foreach primeideal P of S, ﬂ OpC ﬂ P =
PeSpec(S) PeSpec(S)
P(S). Now by Proposition 3.13, V' (S) C ﬂ Op C P(S). Also P(S) € N(S).
PeSpec(S)
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Therefore N (S) = ﬂ Op =P(S).
PeSpec(S)

(iii) = (i): Obvious. [ |
Theorem 3.19. If O p = P for each prime ideal P of a semiring S, then

(1) Sisa?2-primal semiring.

(i) Op = N(P) for each prime ideal P of S.

(iii)) Every prime ideal of § is minimal and completely prime.

Proof. (i) Since Op = P, Op C P. Hence by the Theorem 3.18(iii), N'(S) = P(S)
i.e. §is 2-primal.

(ii) Since N(P) € P and Op = P for each prime ideal P of S, N(P) C O p for each
prime ideal P of S. Now by Theorem 3.16(iv), N(P) = N p for each prime ideal P of
S. Also Op C N p for each prime ideal P of S. Thus Op C N(P) for each prime ideal
P of S. Therefore O p = N(P) for each prime ideal P of S.

(ii1) Let P be a prime ideal of S. From (ii) and the given condition Op = P, we get
N(P) = P for each prime ideal P of S. If Q is a minimal prime ideal of S contained in
P,then N(P) S N(Q) € Q € P =N(P). Thus P = Q ie. P isa minimal prime
ideal of S.

Letxy e P= N(P)andx ¢ P. Since xy € N(P), there exists b € § — P such that
(xy)Sb € P(S) i.e. x(ySh) € P(S). Since P(S) has the IFP (by Theorem 3.16(ii)),
xS(ySb) C P(S) C P. Asx ¢ P,ySb C P. Againsince b ¢ P,y € P. So either
x € Pory e P. Hence P is a completely prime ideal of S. |

Proposition 3.20. If S is a 2-primal semiring and Op = P for some prime ideal P, then
P is a completely prime ideal of §, in particular Op has the IFP.

Proof. Let xy € P = Op. If possible, let x ¢ P. So there exists b € § — P such
that (xy)b = 0. Since S is a 2-primal semiring, by Theorem 3.16, P(S) has the IFP.
Therefore (xSy)Sb € P(S) € P. Since P is prime and x ¢ P, ySb C P. Again since
b ¢ P,y e P. Therefore either x € P or y € P. Hence P is a completely prime ideal
of S. [

Proposition 3.21. Let S be a semiring. If O(P) has the IFP for each minimal prime
ideal P of S, then S is a 2-primal semiring.

Proof. Suppose O(P) has the IFP for each minimal prime ideal P of S. To prove S
is a 2-primal semiring, it is sufficient to show that N'(§) € P(S). Leta € N(S).
Then a" = 0, for some positive integer n. If possible suppose a ¢ P(S), then there
exists a prime ideal P of S such that a ¢ P. As P is a prime ideal of S, S — P
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i1s an m-system of S. So there exists s; € S such that asja ¢ P. Continuing this
process, we get 53,853, ...,5,—1 € S such that asjasya...as,—1a ¢ P. Also since
O(P) has the IFP, " = 0 € O(P) = asjasya...as,_1a € O(P). As O(P) C P,
asiasya . ..asp—1a € P, a contradiction. So a € P(S). Hence P(S) = N (S) i.e. Sis
a 2-primal semiring. |

We now prove that if Op is a prime ideal for each minimal prime ideal P of S, then
the converse of the Proposition 3.21 is true.

Proposition 3.22. Assume that Op be a prime ideal of S for each minimal prime ideal
P of S. Then O(P) has the IFP, for each minimal prime ideal P of § if and only if S is
a 2-primal semiring.

Proof. Let S be a 2-primal semiring and P be a minimal prime ideal of S such that Op
is a prime ideal of S. So OpS € Op and hence OpSb = 0, for some b € S — P. Thus
OpSb € P. As P is aprime ideal of S and b ¢ P, Op C P. Again since Op is a
prime ideal of S and P is a minimal prime ideal of S, Op = P. We now prove that
O(P) = Op. Letx € O(P). Then there exists y € S — P such that xSy = 0. Since §
contains the identity element, xy = 0. Sox € Opi.e. O(P) C Op. Again,leta € Op.
So aS C Op and there exists b € § — P such that aSh = 0. Thus a € O(P). Hence
Op C O(P). Therefore O(P) = Op = P, for each minimal prime ideal P of S. So by
Proposition 3.20, O (P) has the IFP, for each minimal prime ideal P of S. The converse
part follows from the Proposition 3.21. [

Theorem 3.23. Let Op be a prime ideal of S for each minimal prime ideal of S. Then
the following statements are equivalent:

(i) Sis a2-primal semiring.

(i) Op has the IFP for each minimal prime ideal P of S.
(i11)) Op 1s a completely semiprime ideal for each minimal prime ideal P of S.
(iv) Op is a left and right symmetric ideal for each minimal prime ideal P of S.

(v) xy € Op implies ySx € Op for x, y € § and for each minimal prime ideal P of
S.

Proof. (i) = (ii) Since Op is an ideal of §, OpS € Op. So OpSb = 0, for some
beS— P. Thus OpSb C P. As P is aprime ideal of Sand b ¢ P, Op C P. Again
since Op is a prime ideal of S and P is a minimal prime ideal of S, Op = P. Therefore
by Proposition 3.20, O p has the IFP for each minimal prime ideal P of S.

(ii) = (iii) Let x? e Op. Since by (i) Op has the IFP, xSx € Op. As Op is a prime
ideal of §, x € Op. Hence Op is a completely semiprime ideal for each minimal prime
ideal P of S.
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The proofs of (iii) = (iv) and (iv) = (v) are similar to the proofs of (2) = (3)
and (3) = (4) of Theorem 3.15 respectively and so we omit it.

(v) = (i) Let xy € P(S). Then xy € P for each minimal prime ideal P of S. Since
Op is a prime ideal of S for each minimal prime ideal of S, Op = P, for each minimal
prime ideal of S. Thus xy € Op for each minimal prime ideal P of S. So by (v),
ySx € Op = P for each minimal prime ideal P of S. Therefore ySx € P(S). Hence
by (4) = (1) of Theorem 3.15, S is a 2-primal semiring. |

Theorem 3.24. Let Op be a prime ideal for each minimal prime ideal P of S. Then the
following statements are equivalent:

(i) S is a 2-primal semiring.
(i1)) O(P) has the IFP for each minimal prime ideal P of §.

(111) Every minimal prime ideal of S is a completely prime ideal of S.

Proof. (i) = (ii) Follows from the Proposition 3.22.

(ii) = (iii) Let P be a minimal prime ideal of S. Then Op is a prime ideal of S and
O (P) has the IFP. Then by the proof of the Proposition 3.22, we get O(P) = Op = P.
Suppose xy € P. Since O(P) has the IFP, xSy € O(P) = P. Therefore either x € P
ory € P.

(iii) = (i) Since P(S) is the intersection of all minimal prime ideals of S and by (iii)
each minimal prime ideal of § is a completely prime ideal of S and hence P(S) is the
intersection of completely semiprime ideal i.e. P(S) is a completely semiprime ideal of
S. Therefore by Theorem 3.15, S is a 2-primal semiring. |

Proposition 3.25. Let Op be a prime ideal of S for every minimal prime ideal P of S.
Then S is a 2-primal semiring if and only if P = O(P) = O p for each minimal prime
ideal P of S.

Proof. Suppose S is a 2-primal semiring. Since Op is a prime ideal for each minimal

prime ideal P of S, by the proof of the Proposition 3.22, P = O(P) = Op. Therefore by

Proposition 3.20, Op = O(P) is a completely prime and hence a completely semiprime

ideal of S. Hence by Proposition 3.12(ii), Op = Opie. P=0(P)= Op.
Conversely, suppose P = O(P) = O p for each minimal prime ideal P of S. By

Proposition 3.13, NV (S) C ﬂ Op C ﬂ Op = ﬂ 0 = P(S).

PeSpec(S) QemSpec(S) QemSpec(S)
Also P(S) € N(S). So P(S) = N(S). Hence S is a 2-primal semiring. [ |

Proposition 3.26. If Op has the IFP for each minimal prime ideal P of S, then Op C P
for each minimal prime ideal P of S if and only if S is a 2-primal semiring.
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Proof. Suppose Op C P for each minimal prime ideal P of S. Let a € N (S). Then
a" = 0, for some positive integer n such that a” = 0. If possible leta ¢ P(S). So there
exists a prime ideal P of S such thata ¢ P. Since P is a prime ideal of S, S — P is am-
system and therefore there exist s, 52, ..., s,—1 € S such that asjasya...s,—1a & P.
Again since Op has the IFP and ¢" = 0 € Op, asjasza...s,_1a € Op. Since
Op C P,asiasra...s,—1a € P, acontradiction. So a € P(S). Hence N (S) C P(S).
Also P(S) € N(S). Thus P(S) € N (S) i.e. S isa 2-primal semiring.

Conversely, suppose S is a 2-primal semiring and P is a minimal ideal of §. Let
a € Op. Then there exists b € § — P such that ab = 0. So ab € P(S). Since S is a
2-primal semiring, by Theorem 3.16, P(S) has the IFP. So aSb € P(S) which implies
that aSb C P. Since P is a prime ideal of Sand b ¢ P,a € P. Hence Op C P. |
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