Super Geometric Mean Labeling Of Some Disconnected Graphs

¹S.S.Sandhya, ²E. Ebin Raja Merly and ³B.Shiny

1. Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai – 629 003 Kanyakumari District Tamil Nadu

2. Department of Mathematics, Nesamony Memorial Christian College, Marthandam – 629 165, Kanyakumari District, Tamil Nadu.

3. Department of Mathematics, DMI Engineering College, Aralvaimozhi – 629 301, Kanyakumari District, Tamil Nadu

ABSTRACT

Let f: V(G) \rightarrow {1,2,...,p+q} be an injective function. For a vertex labeling "f", the induced edge labeling f*(e=uv) is defined by, f*(e)=[$\sqrt{f(u)f(v)}$] or [$\sqrt{f(u)f(v)}$]. Then "f" is called a "Super Geometric mean labeling" if {f(V(G))} \cup {f(e):e \in E(G)}={1,2,...,p+q}. A graph which admits Super Geometric mean labeling is called "Super Geometric mean graph". In this paper we prove that some disconnected graphs are Super Geometric mean graphs.

Key words: Graph, Super Geometric mean graph, Path, Comb and Ladder.

1. Introduction

The graphs considered here are simple, finite and undirected graphs. Let V(G) denote the vertex set of G and E(G) denote the edge set of G. For a detailed survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notations we follow Harary [2]. The concept of "Geometric mean labeling" has been introduced by S.Somasundaram, R.Ponraj and P.Vidhyarani in [4]. S.S.Sandhya, E. Ebin Raja Merly and B.Shiny introduced "Super Geometric mean labeling" in [5].

In this paper, we investigate "Super Geometric mean labeling" behavior of some disconnected graphs.

Now we will give the following definitions which are necessary for our present investigation.

Definition: 1.1

A graph G=(V,E) with p vertices and q edges is called a "Geometric mean graph" if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1,2,...,q+1 in such a way that when each edge e=uv is labeled with

 $f(e=uv)=\left[\sqrt{f(u)f(v)}\right]$ or $\left[\sqrt{f(u)f(v)}\right]$ then the edge labels are distinct. In this case, "f" is called a "Geometric mean labeling" of G.

Definition: 1.2

Let f: V(G) \rightarrow {1,2,...,p+q} be an injective function. For a vertex labeling "f", the induced edge labeling f* (e=uv) is defined by,

 $f^*(e) = \left[\sqrt{f(u)f(v)}\right]$ or $\left[\sqrt{f(u)f(v)}\right]$. Then "f" is called a "Super Geometric mean labeling" if $\{f(V(G))\} \cup \{f(e):e \in E(G)\} = \{1,2,\ldots,p+q\}$. A graph which admits Super Geometric mean labeling is called "Super Geometric mean graph".

Definition: 1.3

The **union** of two graphs $G_1=(V_1E_1)$ and $G_2=(V_2, E_2)$ is a graph $G=G_1\cup G_2$ with vertex set $V=V_1\cup V_2$ and the edge set $E=E_1\cup E_2$.

Definition: 1.4

A **path** P_n is a walk in which all the vertices are distinct.

Definition: 1.5

A graph obtained by joining a single pendant edge to each vertex of a path is called a **Comb** ($P_n A K_1$).

Definition: 1.6

The **Ladder** L_n , $n \ge 2$ is the product graph $P_n x P_2$ and contains 2n vertices and 3n-2 edges.

Definition: 1.7

The graph $P_n AK_{1,2}$ is obtained by attaching $K_{1,2}$ to each vertex of P_n .

Definition: 1.8

The graph $P_n AK_{1,3}$ is obtained by attaching $K_{1,3}$ to each vertex of P_n .

2. Main Results

Theorem: 2.1

 $P_m \cup P_n$ is a Super Geometric mean graph.

Proof:

Let $P_m=u_1 u_2 \dots u_m$ be a path on "m" vertices. Let $P_n=t_1t_2\dots t_n$ be another one path on "n" vertices. Let $G=P_m \cup P_n$ Define a function f: $V(G) \rightarrow \{1,2,\dots,p+q\}$ by, $f(u_i)=2i-1, 1 \le i \le m$ $f(t_i)=2m+2i-2, 1 \le i \le n$ Edge labels are given by, $f(u_i u_{i+1})=2i, 1 \le i \le m-1$ $f(t_it_{i+1})=2m+2i-1, 1 \le i \le n-1$ \therefore The edge labels are distinct. Thus "f" provides a Super Geometric mean labeling. Hence $P_m \cup P_n$ is a Super Geometric mean graph.

Example: 2.2

A Super Geometric mean labeling of $P_7 \cup P_8$ is shown below.

Theorem: 2.3

 $(P_m A K_1) \cup P_n$ is a Super Geometric mean graph.

Proof:

Let $(P_m A K_1)$ be a Comb graph obtained from a path $P_m = v_1 v_2 \dots v_m$ by joining a vertex u_i to v_i , $1 \le i \le m$. Let $P_n = w_1 w_2 \dots w_n$ be a path. Let $G = (P_m A K_1) \cup P_n$ Define a function $f: V(G) \rightarrow \{1, 2, \dots, p+q\}$ by, $f(v_i) = 4i-1, 1 \le i \le m$ $\begin{array}{l} f(u_i)=4i-3, \ 1\leq i\leq m\\ f(w_i)=4m+2i-2, \ 1\leq i\leq n\\ \text{Edges are labeled with,}\\ f(v_iv_{i+1})=4i, \ 1\leq i\leq m-1\\ f(u_iv_i)=4i-2, \ 1\leq i\leq m\\ f(w_iw_{i+1})=4m+2i-1, \ 1\leq i\leq n-1\\ \text{Thus we get distinct edge labels.}\\ \text{Hence }(P_mAK_1)\cup P_n \text{ is a Super Geometric mean graph.} \end{array}$

Example: 2.4

Super Geometric mean labeling of $(P_6 \land K_1) \cup P_5$ is given below.

Theorem: 2.5

 $L_m \cup P_n$ is a Super Geometric mean graph.

Proof:

Let $L_m=P_mxP_2$ be a ladder, $P_m=v_1v_2...v_m$ Let $P_n=w_1w_2...w_n$ be a path Let $G=L_m\cup P_n$. Define a function f: $V(G) \rightarrow \{1,2,...,p+q\}$ by, $f(v_1)=1$ $f(v_i)=5i-2, 2\leq i\leq m$. $f(u_1)=4$ $f(u_i)=5m+2i-3, 1\leq i\leq m$. Edges are labeled with, $f(v_1v_2)=3$ $f(v_iv_{i+1})=5i, 2\leq i\leq m-1$ $f(u_1u_2)=5$,

 $f(u_iu_{i+1})=5i-1, 2\le i\le m-1$ f(v_iu_i)=5i-3, 1≤i≤m f(w_iw_{i+1})=5m+2i-2, 1≤i\le n-1 ∴ We get distinct edge labels. Hence "f" provides a Super Geometric mean labeling. ∴ L_m∪P_n is a Super Geometric mean graph.

Example: 2.6

Super Geometric mean labeling of $L_5 \cup P_6$ is displayed below.

Theorem: 2.7

 $(P_m \land K_{1,2}) \cup P_n$ is a Super Geometric mean graph.

Proof:

Let $(P_m A K_{1,2})$ be a graph obtained by attaching each vertex of a path P_m to the central vertex of $K_{1,2}$ where $P_m=u_1u_2...u_m$.

Let v_i and w_i be the vertices of $K_{1,2}$ which are attached with the vertex u_i of $P_m, 1{\leq}i{\leq}m.$

Let $P_{n=z_1z_2...z_n}$ be a path. Let $G=(P_mAK_{1,2})\cup P_n$. Define a function f: $V(G) \rightarrow \{1,2,...,p+q\}$ by $f(u_i)=6i-3, 1 \le i \le m$ $f(v_i)=6i-5, 1 \le i \le m$ $f(w_i)=6i-1, 1 \le i \le m$ $f(z_i)=6m+2i-2, 1 \le i \le n$ Edges are labeled with, $f(u_iu_{i+1})=6i, 1 \le i \le m-1$ $f(u_iv_i)=6i-4, 1 \le i \le m$ $\begin{array}{l} f(u_iw_i)=6i-2 \ 1 \le i \le m \\ f(z_iz_{i+1})=6m+2i-1, \ 1 \le i \le n-1 \\ \therefore \ The \ edge \ labels \ are \ distinct. \\ Hence \ G \ admits \ a \ Super \ Geometric \ mean \ labeling. \\ Hence \ (P_mAK_{1,2}) \cup P_n \ is \ a \ Super \ Geometric \ mean \ graph. \end{array}$

Example: 2.8

Super Geometric mean labeling of $(P_4 \land K_{1,2}) \cup P_5$ is shown below.

Theorem: 2.9

 $(P_m A K_{1,3})$ is a Super Geometric mean graph.

Proof:

Let $(P_m A K_{1,3})$ be a graph obtained by attaching each vertex of a path $P_m = u_1 u_2 \dots u_m$ to the central vertex of $K_{1,3}$.

Let v_i , w_i and z_i be the vertices of $K_{1,3}$ which are attached with the vertex u_i of P_m , $1 \le i \le m$.

Let $P_n=t_1t_2...t_n$ be a path. Let $G=(P_mAK_{1,3})\cup P_n$ Define a function f: $V(G) \rightarrow \{1,2,...,p+q\}$ by, $f(u_i)=8i-3, 1 \le i \le m$ $f(v_i)=8i-7, 1 \le i \le m$ $f(w_i)=8i-5, 1 \le i \le m$ $f(z_i)=8i-1, 1 \le i \le m$ $f(t_i)=8m+2i-2, 1 \le i \le n$ Edges are labeled with, $f(u_iu_{i+1})=8i, 1 \le i \le m-1$ $f(u_iv_i)=8i-6, 1 \le i \le m$

 $\begin{array}{l} f(u_iw_i)=8i\text{-}4,\ 1\leq i\leq m\\ f(u_iz_i)=8i\text{-}2,\ 1\leq i\leq m\\ f(t_it_{i+1})=8m+2i\text{-}1,\ 1\leq i\leq n\text{-}1\\ \text{From the above labeling pattern, both vertices and edges together get distinct labels}\\ from\ \{1,2,\ldots,p\text{+}q\}.\\ \text{Hence}\ (P_mAK_{1,3})\cup P_n \text{ is a Super Geometric mean graph.} \end{array}$

103

Example: 2.10

Super Geometric mean labeling of $(P_5 A K_{1,3}) \cup P_4$ is given below.

Theorem: 2.11

Let G_1 be a graph obtained from a path $P_m=v_1v_2...v_m$ by joining pendant vertices with the vertices of the path P_m alternatively. Let $P_n=w_1w_2...w_n$ be another path. Let $G=G_1\cup P_n$. Then G is a Super Geometric mean graph.

Proof:

Let G_1 be a graph obtained from a path $P_m=v_1v_2...v_m$ by joining pendant vertices with the vertices of the path P_m , alternatively.

Let $P_n = w_1 w_2 \dots w_n$ be another one path. Let $G = G_1 \cup P_n$ Define a function f: $V(G) \rightarrow \{1, 2, \dots, p+q\}$ by, $f(v_i) = 3i, i = 1, 3, 5, \dots m$ $f(v_{2i}) = 6i - 1, 1 \le i \le \left(\frac{m-1}{2}\right)$ $f(u_i) = 3i - 2, i = 1, 3, 5, \dots m$ $f(w_i) = 3m + 2i - 1, 1 \le i \le n$ Edges are labeled with, $f(v_i v_{i+1}) = 3i + 1, i = 1, 3, 5, \dots, m - 2$ $f(v_{2i} v_{2i+1}) = 6i, 1 \le i \le \left(\frac{m-1}{2}\right)$ $f(v_i u_i) = 3i - 1, i = 1, 3, 5, \dots, m$ $f(w_iw_{i+1})=3m+2i, 1 \le i \le n-1$ ∴ We get distinct edge labels. Hence {f(V(G))} ∪ {f(e):e ∈ E(G)} = {1,2,...,p+q}. Hence G is a Super Geometric mean graph.

Example: 2.12

Let G_1 be a graph obtained from a path P_9 by joining pendant vertices with the vertices of P_9 alternatively. A Super Geometric mean labeling of $G=G_1\cup P_5$ is displayed below.

Theorem: 2.13

Let G_1 be a graph obtained from a Ladder L_m , $m \ge 2$ by joining a pendant vertex with a vertex of degree two on both sides of upper and lower path of the ladder. Let $P_n=t_1t_2...t_n$ be another path. Let $G=G_1 \cup P_n$. Then G is a Super Geometric mean graph.

Proof:

Let $L_m = P_m x P_2$ be a Ladder graph.

Let G_1 be a graph obtained from a Ladder by joining pendant vertices u,w,x,z with v_1 , v_n , u_1 , u_n (vertices of degree 2) respectively on both sides of upper and lower path of the ladder.

Let $P_n=t_1t_2...t_n$ be another one path. Let $G=G_1 \cup P_n$ Define a function f: V(G) \rightarrow {1,2,...,p+q} by, f(u)=1 f(v_1)=5 f(v_i)=5i-1, 2 \le i \le m f(w)=5m+5

 $\begin{array}{l} f(x)=3 \\ f(u_i)=5i+3, \ 1 \leq i \leq m \\ f(z)=5m+6 \\ f(t_i)=5m+2i+5, \ 1 \leq i \leq n \\ Edges are labeled with, \\ f(v_iv_{i+1})=5i+2, \ 1 \leq i \leq m-1 \\ f(uv_1)=2 \\ f(v_mw)=5m+2 \\ f(xu_1)=4 \\ f(u_iu_{i+1})=5i+5, \ 1 \leq i \leq m-1 \\ f(u_mz)=5m+4 \\ f(v_iu_i)=5i+1, \ 1 \leq i \leq m \\ f(t_it_{i+1})=5m+2i+6, \ 1 \leq i \leq n-1 \\ In view of the above labeling pattern, "f" provides a Super Geometric mean labeling of G. \end{array}$

Hence G is Super Geometric mean graph.

Example: 2.14

A super Geometric mean labeling of G when m=5 and n=6 is shown below.

Theorem: 2.15

Let G_1 be a graph obtained by joining a pendant vertex with a vertex of degree two on both sides of a Comb graph. Let $P_n=w_1w_2...w_n$ be another path. Let $G=G_1\cup P_n$. Then G is a Super Geometric mean graph.

Proof:

Comb $(P_m A K_1)$ is a graph obtained from a path $P_m = v_1 v_2 \dots v_m$ by joining a vertex u_i to v_i , $1 \le i \le m$.

Let G_1 be a graph obtained by joining pendant vertices w and z to v_1 and v_m respectively.

Let $P_n = w_1 w_2 \dots w_n$ be another one path.

Let $G=G_1 \cup P_n$. Define a function f: V(G) \rightarrow {1,2,...,p+q} by, f(w)=1 $f(v_1)=3$ $f(v_i)=4i+1, 2\leq i\leq m$ f(z)=4m+3 $f(u_1)=5$ $f(u_i)=4i-1, 2\leq i\leq m$ $f(w_i) = 4m + 2i + 2, 1 \le i \le n$ Edges are labeled with $f(wv_1)=2$ $f(v_iv_{i+1})=4i+2, 1 \le i \le m-1$ $f(v_n z) = 4m + 2$ $f(v_i u_i) = 4i, 1 \le i \le m$ $f(w_i w_{i+1}) = 4m + 2i + 3, 1 \le i \le n-1$ \therefore The edge labels are distinct. Hence G is a Super Geometric mean graph.

Example: 2.16

A Super Geometric mean labeling of G when m=5, and n=4 is displayed below.

Theorem 2.17

Let P_m be a path and G_1 be the graph obtained from P_m , by attaching C_3 in both end edges of P_m . Let $P_n=w_1w_2...w_n$ be another path. Let $G=G_1\cup P_n$. Then G is a Super Geometric mean graph.

Proof:

Let P_m be a path $u_1u_2...u_n$ and $v_1u_1u_2$, $v_2u_{n-1}u_n$ be the triangles at the end edges of P_m . The resulting graph is G_1 .

Let $P_n = w_1 w_2 \dots w_n$ be another one path. Let $G=G_1 \cup P_n$. Define a function f: V(G) \rightarrow {1,2,...,p+q} by, $f(v_1)=4$ $f(u_1)=1$ $f(u_i)=2i+2, 2 \le i \le m-1$ $f(u_m)=2m+5$ $f(v_2)=2m+2$ $f(w_i)=2m+2i+4, 1 \le i \le n$ Edges are labeled with $f(v_1u_1)=2$ $f(v_1u_2)=5$ $f(u_1u_2)=3$ $f(u_iu_{i+1})=2i+3, 2 \le i \le m-2$ $f(u_{m-1} u_m)=2m+3$ $f(v_2u_{m-1})=2m+1$ $f(v_2u_m)=2m+4$ $f(w_iw_{i+1})=2m+2i+5, 1 \le i \le n-1$: We get distinct edge labels. Thus both vertices and edges together get distinct labels from $\{1, 2, \dots, p+q\}$. Hence G is a Super Geometric mean graph

Example: 2.18

A Super Geometric mean labeling of G when m=8 and n=5, is shown below.

References:

- [1] J.A.Gallian (2012), **"A dynamic survey of graph labeling"** The Electronic Journal of Combinatories.
- [2] F. Harary, 1988, "Graph Theory" Narosa publishing House, New Delhi.
- [3] S. Somasundaram, R. Ponraj and S.S.Sandhya, "Harmonic mean labeling of graphs", communicated to Journal of combinatorial Mathematics and combinatorial computing.
- [4] S. Somasundaram, R. Ponraj and P. Vidhyarani "Geometric mean labeling of graphs", Bulletin of Pure and Applied Sciences, 30E(2), (2011), p-153-160.
- [5] S.S.Sandhya, E. Ebin Raja Merly and B.Shiny "**Super Geometric mean labeling**" presented in 23rd International Conference of Forum for Interdisciplinary Mathematics (FIM) on Interdisciplinary Mathematical, Statistical and Computational Techniques.
- [6] S.S.Sandhya, E.Ebin Raja Merly and B.Shiny **"Some Results on Super Geometric mean labeling"** International Journal of Mathematics Research. ISSN 0976-5840, Volume 6, Number 3 (2014), pp.289-295