F^{*}- **Bi Near Subtraction Semigroups**

S.Firthous Fatima⁽¹⁾ and S. Jayalakshmi⁽²⁾

 (1)Department of Mathematics, Sadakathullah Appa College (Autonomous), Thirunelveli- 627 011, Tamil Nadu,India
(2) Department of Mathematics, Sri ParaSakthi College for women (Autonomous), Courtallam, Tamil Nadu,India,

Abstract

In this paper we introduce the notion of F^* - bi-near subtraction semigroup. Also we give characterizations of F^* - bi-near subtraction semigroup.

Mathematical subject classification: 06F35

Key words: F^* - bi-near subtraction semigroup, strong S₁-near subtraction semigroup, strong S₂- -near subtraction semigroup, Mate function, Boolean.

1.Introduction

In 2007, Dheena[1] introduced Near Subtraction Algebra, Throughout his paper by a Near Subtraction Algebra, we mean a Right Near Subtraction Algebra. For basic definition one may refer to Pillz[4]. Zekiye Ciloglu, Yilmaz Ceven [5] gave the notation of Fuzzy Near Subtraction semigroups. Seydali Fathima et.al[2,3] introduced the notation of S₁-near subtraction semigroup and S₂-near subtraction semigroup. Recently Firthous et.al[2] introduced the notation of F- Bi near subtraction semigroup. In this paper we shall obtained equivalent conditions for regularity in terms of F^* - Bi near subtraction semigroup.

2. Preliminaries :

A non-empty subset X together with two binary operations "–" and "." is said to be *subtraction semigroup* If (i) (X,–) is a subtraction algebra (ii) (X, .) is a semi group (iii) x(y-z)=xy-xz and (x-y)z=xz-yz for every x, y, $z \in X$. A non-empty subset X together with two binary operations "–" and "." is said to be *near subtraction semigroup* if (i) (X,–) is a subtraction algebra (ii) (X,.) is a semi group and (iii) (x-y)z=xz-yz for every x, y, $z \in X$. A non-empty subset X=X₁ \cup X₂ together with two

binary operations "-" and "." Is said to be *bi-near subtraction semigroup*(right). If (i) $(X_1,-,.)$ is a near-subtraction semigroup (ii) $(X_2,-,.)$ is a subtraction semigroup. A nonempty subset X is said to be S_1 -near subtraction semi group if for every $a \in X$ there exists $x \in X^*$ such that axa=xa.. A non-empty subset X is said to be S_2 -near subtraction semi group if for every $a \in X$ there exists $x \in X^*$ such that axa=ax.. A nonempty subset X is said to be strong S_1 -near subtraction semi group if aba=ba for all $a, b \in X$.. A non-empty subset X is said to be strong S_2 -near subtraction semi group if aba=ab for all $a, b \in X$. If there exists a map f:X \rightarrow Y such that a = a f(a) a for all a in X then f is called a mate function for X. An element $a \in X$ is said to be Boolean if $a^2 = a$. A non-empty subset $X=X_1\cup X_2$ together with two binary operations"-" and "." Is said to be F- bi near subtraction semigroups. If (i) for every $a \in X_1$ there exists $x \in X_1^*$ such that axa=xa. (ii) for every $a \in X_2$ there exists $x \in X_2^*$ such that axa=ax.

3..F^{*}-Bi near Subtraction Semigroup

Definition 3.1

A non-empty subset $X=X_1\cup X_2$ together with two binary operations"-" and "." Is said to be F^* - **bi near subtraction semigroups** (strong **F**-Bi near Subtraction Semigroups). If (i) if aba=ba for all a, $b \in X_1$. (ii) if aba=ab for all a, $b \in X_2$.

Example 3.2

Let $X_1 = \{0, a, b, 1\}$ in which "-" and "." be defined by

-	0	a	b	1
0	0	0	0	0
a	a	0	1	b
b	b	0	0	b
1	1	0	1	0

	0	a	b	1
0	0	0	0	0
a	a	a	a	a
b	a	0	1	b
1	0	a	b	1

Thus X_1 is a strong s₁-near subtraction semi group

Let $X_2 = \{0,a,b,1\}$ in which "-" and "." be defined by

-	0	a	b	1
0	0	0	0	0
a	a	0	1	b
b	b	0	0	b
1	1	0	1	0

09					
•	0	a	b	1	
0	0	0	0	0	
a	a	0	a	0	
b	0	0	b	b	
1	0	a	b	1	

Thus X_2 is a strong S_2 -near subtraction semigroup. Hence, $X = X_1 \cup X_2$ is a strong F- binear subtraction semi group (F*-binear subtraction semi group).

Result 3.3

Every F^* -bi near Subtraction Semigroup is a F- bi near Subtraction Semigroup **Proof:** Let $X = X_1 \cup X_2$ be a F^* -bi near Subtraction Semigroup where X_1 is a strong S_1 - near subtraction semigroup and X_2 is a strong S₂-near subtraction semigroupBy [3], Every Strong S_1 -near subtraction semigroup is a S_1 -near subtraction semigroup By [4], Every Strong S_2 -near subtraction semigroup is a S_2 -near subtraction semigroupHere, X_1 is an S₁-near subtraction semigroup and X_2 is an S₂-near subtraction semigroup. Thus $X = X_1 \cup X_2$ is a F- bi near Subtraction Semigroup.

Remark 3.4: The converse of the above result need not be true.

Example 3.4

Let $X_1 = \{0, a, b, c\}$ in which "-" and "." be defined by

-	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	b
c	c	c	c	0

•	0	a	b	с
0	0	0	0	0
a	0	0	0	a
b	0	0	0	b
с	0	0	0	с

Thus (X₁, -, .) is not a strong s₁-near subtraction semi group (since $aba \neq a$) Let $X_2 = \{0,a,b,c\}$ in which "-" and "." be defined by

Let M_2	anu			
-	0	a	b	c
0	0	0	0	0
a	a	0	a	b
b	b	b	0	b
с	с	с	с	0

2				
•	0	a	b	с
0	0	0	0	0
a	a	a	b	a
b	0	0	0	0
с	0	0	0	с

Thus $(X_2, -, .)$ is not a strong S₂-near subtraction semigroup (since bab \neq ab). Hence, $X = X_1 \cup X_2$ is not a strong F- bi-near subtraction semi group (F*-bi-near subtraction semi group).

4.Results on *F*^{*}*-bi near Subtraction Semigroup.* **Proposition 4.1**

The intersection of strong S_1 -near subtraction semigroup and strong S_2 -near subtraction semigroup is sub commutative near subtraction semigroup.

Proof

Let X₁ is a strong S₁-near subtraction semigroup. there exists $x \in X_1^*$ such that axa=xa. ---(1) (by [3], Every Strong S_1 -near subtraction semigroup is a S_1 -near subtraction semigroup)Let X_2 is an Strong S₂-near subtraction semigroup, there exists $x \in X_2^*$ such that axa=ax -----(2) (by [3], Every Strong S_2 -near subtraction semigroup is a S_2 -near subtraction semigroup)From (1) and (2), we get xa=axThus, X is a sub commutative near subtraction semigroup.

Proposition 4.2

Let X be a F^{*}-bi near Subtraction Semigroup Then X has a mate function if and only if

137

X is Boolean.

Proof: Let $X = X_1 \cup X_2$ be a F^* -bi near Subtraction Semigroup where X_1 is a strong S_1 near subtraction semigroup and X_2 is a strong S_2 -near subtraction semigroup Assume that f is a mate function for X_1 . If $a \in X_1$ then a f(a)=a. Since X_1 is a strong S_1 -near subtraction semigroup, a f(a) a = f(a) a (Ie.,) a = f(a) a. Now, $a^2 = a = a$ (f(a) a) = $a(Ie.,) a^2 = a$ Thus X_1 is Boolean. Assume that f is a mate function for X_2 . If $a \in X_2$ then a = a f(a) a . Since X_2 is a strong S_2 -near subtraction semigroup, a f(a) a = a f(a)(Ie.,) a =a f(a). Now, $a^2 = a = (a f(a)) a = a(Ie.,) a^2 = a$ Thus X_2 is Boolean. Therefore X = $X_1 \cup X_2$ where X_1 is Boolean and X_2 is Boolean. Hence, X is Boolean.

Proposition 4.3

Let X be a F^* -bi near Subtraction Semigroup Then $aXbX \cup XaXb=abX \cup Xab$ for all $a,b \in X$.

Proof: Let $X = X_1 \cup X_2$ be a F^* -bi near Subtraction Semigroup where X_1 is a strong S_1 -near subtraction semigroup and X_2 is a strong S_2 -near subtraction semigroup Since X_1 is a strong S_1 -near subtraction semigroup, a b a=b a for all a, b $\in X_1$. Let $x_1 \in a X_1 b X_1$. Then there exists $n, n^1 \in X_1$ such that X_1 =a n b n^1 =a (nb) n^1 = a (bnb) n^1 = (ab) $nbn^1 \in abX_1$ (Ie.,) $X_1 \in abX_1$; a $X_1 b X_1 \subseteq abX_1$ ---(1)Let $y_1 \in abX_1$ Then there exists m $\in X_1$ such that Y_1 = abm = a(bm) =a(mbm) $\in a X_1 b X_1$. (Ie.,) $Y_1 \in a X_1 b X_1$. $a X_1 b X_1 \subseteq abX_1$ ---(1)Let $y_1 \in a X_1 b X_1$. $a X_1 b X_1 \subseteq a X_1 b X_1$ and Y_1 = abm = a(bm) =a(mbm) $\in a X_1 b X_1$. (Ie.,) $Y_1 \in a X_1 b X_1$. $a X_1 b X_1 \subseteq a X_1 b X_1$ and Y_2 is a strong S_2 -near subtraction semigroup, a b a=b a for all a, b $\in X_2$. Let $x_2 \in X_2 a X_2 b$. Then there exists $n, n^1 \in X_2$ such that X_2 = n a $n^1 b$ =n (a $n^1 a) n^1$ = (n a $n^1) ab \in X_2 ab$ (Ie.,) $X_2 \in X_2 a X_2 b \subseteq X_2 a b$ ------(3) Let $y_2 \in X_2 a b$ Then there exists $m \in X_2$ such that Y_2 = m $ab = (ma)b = (mam)b = mamb \in X_2 a X_2 b$. (Ie.,) $Y_2 \in X_2 a X_2 b . X_2 ab \subseteq X_2 a X_2 b ------(4)$ from (3) and (4) we have $X_2 a X_2 b = X_2 a b$ for all $a, b \in X_2$. Since $X = X_1 \cup X_2$ is a F^* -bi near Subtraction Semigroup Hence, $aXbX \cup XaXb=abX \cup Xab$ for all $a, b \in X$.

Proposition 4.4

Let X be a F^* -bi near Subtraction Semigroup Then ab and $ba \in E$ for all $a, b \in X$.

Proof: Let $X = X_1 \cup X_2$ be a F^* -bi near Subtraction Semigroup where X_1 is a strong S_1 near subtraction semigroup and X_2 is a strong S_2 -near subtraction semigroup Since X_1 is a strong S_1 -near subtraction semigroup, a x a=x a for all a, $x \in X_1$. Let $a, b \in X_1$. Now, $ab=bab=(ba)b=(aba)b=ab^2$. (Ie.,) $ab=ab^2$. Which implies $ab \in E$ In similar way we have $ba \in E$ Since X_2 is a strong S_2 -near subtraction semigroup, x y x =x y for all $x, y \in X_2$. Let $a, b \in X_2$. Now, $(ab)^2=abab=a(bab)=a(ba)=aba=ab$. (Ie.,) $ab^2=ab$. Which implies $ab \in E$ In similar way we have $ba \in E$ for all $a, b \in X_2$. Therefore $X=X_1\cup X_2$ is a F^* -bi near Subtraction Semigroup Thus ab and $ba \in E$ for all $a, b \in X$.

5. ACKNOWLEDGEMENT

The first author expresses her deep sense of gratitude to the UGC-SERO, Hyderabad, No: F. MRP- 5365/14 for financial assistance.

References

- [1] Dheena.P and Sathesh kumar.G, *On Strongly Regular Near- Subtraction semi groups*, Commun. Korean Math. Soc.22 (2007), No.3, pp.323-330.
- [2] Firthous Fatima.S and Jeya Lakshmi.S, F- bi near subtraction semigroups, international research journal of pure algebra-5(8), 2015, 1-4
- [3] Seyadali Fathima.S and Balakrishnan.R, S₁-near subtraction semigroups, Ultra Scientist Vol.24(2012), (3)A,578-584.
- [4] Seyadali Fathima.S and Balakrishnan.R, S₂-near subtraction semigroups, Research Journal of Pure Algebra-2(2012), (12)A,382-386.
- [4] Pilz Gunter, *Near-Rings*, North Holland, Amsterdam, 1983
- [5] Zekiye Ciloglu, Yilmaz Ceven, *On Fuzzy Near Subtraction semigroups*, SDU Journal of Science (E-Journal), 2014, 9(1):193-202.

S.Firthous Fatima and S. Jayalakshmi