
International Journal of Mathematics Research.

ISSN 0976-5840 Volume 7, Number 2 (2015), pp. 159-166

© International Research Publication House

http://www.irphouse.com

Time Dependent Bulk Transportation Problem

Dr. B. Naganna and Dr. M. Sundara Murthy

Lecturer in Mathematics, Govt. Polytechnic, Adoni, Kurnool(Dist)

Andhra Pradesh-518301

Rtd. Professor in Mathematics, S. V. University, TIRUPATI-517 502 (A. P)

ABSTRACT

There is a set I = (1, 2,---, m) of m sources which produces a particular

product, a set J = (1, 2,---, n) of n destinations which require this product and

a set k = (1, 2,---, p) which is a time / facility. The requirement of the

destination j  J is DR (j) and the capacity of the source i  I is SC (i). C(i, j, k)

be the Time Dependent Bulk Transportation Cost from source ‘i’ to the

destination ‘j’ at time / facilities k. There is a restriction that each destination

in ‘J’ should get its requirement from any one source at any point of time /

facility k, but the source can supply to any number of destinations subject to

its capacity. The objective is to find the least transportation cost satisfying the

requirements of all the destinations in ‘J’ at some point of time / facility ‘k’.

An effective "Lexi Search" algorithm is developed using" Pattern Recognition

Technique" and it is effective in solving for higher values of m, n and k. For

this problem a computer programmed in 'C' language is developed for the

algorithm and is tested.

Keywords: Time Dependent Bulk Transportation Problem, Lexi search

Algorithm, Pattern Recognition Technique, Trip-Schedule, Alphabet Table,

Word, and Search Table.

1. Introduction:

In this chapter we will study 'Time Dependent Bulk Transportation Problem" (TD

Bulk TP) with the following characteristics.

(i) The sources are fixed and the capacity of each source is given

(ii) The requirements of the destinations are given

(iii) In C(i, j, k), ‘k’ stands for the third dimension which is generally called

time/facility, but it is not the usual continuous time. It stands for another

independent factor which influences the cost ‘C’. The cost generally depends

on ‘i’ and ‘j’. For example in the case of cost or distance it depends not only

160 Dr. B. Naganna and M. Sundara Murthy

on i, j, the third factor may be the nature of vehicle used (i. e. Petrol vehicle or

diesel vehicle or luxury vehicle etc.). Under this consideration Miller etal.

(1960), perskalla (1966), Picard and Queyranne (1978), Bhavani and Sundara

Murthy (2005), S. Das and Monisha Borthakur (2006) have studied a variety

of problems.

(iv) A destination should get its requirement from any one source at some point of

time / facility and a source can supply to any number of destinations subject to

its capacity.

(v) The bulk-transportation cost from a source to a destination at some point of

time / facility is given.

The objective is to supply the requirements of the destinations with a minimum cost

satisfying the above conditions.

The above Bulk Transportation without time/facility can be thought of as a two

dimension bulk transportation problem (with cost c (i, j)). This also can be formulated

as a 0-1 programming problem and can be solved (Balas-1965 and Glover-1965). But

none of these methods will take the advantage of the combinatorial structure of the

problem which is very close to that of the 'assignment problem'. Demaio and Roveda-

1971 first formulated this problem and they have developed a branch and bound

algorithm to solve it. They also gave a practical situation where this problem arises.

Later, Srinivasan and Thompson-1973, Vanita verma and M. C. Puri-1996 were

developed a branch and bound algorithm for the same problem. They have formulated

a modified transportation problem for which the optimal solution of the above

problem will be a basic feasible solution. They believe that this algorithm is better

than the one presented by Demaio and Roveda-1971 because their algorithm utilises

the structure of the transportation problem. The main drawback of Demaio and

Reveda's algorithm is a lot of calculations are required for checking the feasibility of a

solution, and several solutions have to be recorded till the optimal solution is

identified. The letter's algorithm ignores the simple structure of the problem, which is

very close to that of assignment problem in finding an optimal solution. In this

algorithm a series of transportation problems are formulated and solved. Integer

solutions are expected at each stage.

In the present study, takes out the drawbacks of Demaio and Roveda algorithm and

we developed an algorithm called the Lexi-Search algorithm which takes the

advantage of the simple structure of the problem to get an optimal feasible solution

((a) Pandit and Sundara Murthy-1975 and (b) Sundara Murthy-1976) was presented.

We will introduce the following notations:

Let

I = {i =1, 2,----, m) be the set of m sources

J = {j =1, 2,----, n } be the set of n destinations

T = {k =1, 2,----, p } be the set of p time / facilities

SC = SC (i), i  S be an array, where SC (i) is the availability at source i

DR = DR (j), j  J be an array where DR (j) is the requirement of the destination j

C = C (i, j, k), i  I, j  J, k  T, where C (i, j, k) be the bulk-transportation Cost of

supplying from source i to destination j at any point of time / facility k.

Time Dependent Bulk Transportation Problem 161

The problem is to find a solution i.e. Trip-schedule with a least total transportation

cost in which the destinations get their requirements with the given condition.

The time/facility constraint introduces the complexity. Hence the algorithm for

solving the Bulk-Transportation problem of two dimensions is not directly useful. In

the sequel a Lexi search algorithm is developed to solve this problem.

2. Mathematical Formulation:

    C (i, j, k) X (i, j, k)

Minimize Z = iI jJ kK

Subject to   DR (j) X (i, j, k) ≤ SC (i), for i  I

 j  J kK

   X (i, j, k) = 1, for j  J

 i  I kK

 X (i, j, k) = 0 or 1 for i  I, j  J, k  K

X (i, j, k) = 1, indicates that the requirement at destination j is supplied from the

source i at time/facility k. Each destination should get its requirement from one source

only and the source can supply to any number of destinations subject to its capacity.

The problem is to find the Trip-schedule X i. e. a solution with a least total

transportation cost.

In the sequel we developed a Lexi-search algorithm based on the "Pattern Recognition

Technique" to get the optimal solution for the problem and it takes care of the simple

combinatorial structure of the problem.

4. The Concepts and Definitions:

Definition of pattern:

An indicator three dimensional array which is associated with a solution is called

"pattern". A pattern is said to be feasible if the matrix X is feasible solution. The

pattern given by Table-2 is a feasible solution, whereas the pattern given by table-3 is

in feasible.

The words pattern, solution, and word are used synonymously.

Now V (x) be the value of the pattern X is defined as

V (x) =    C (i, j, k) X (i, j, k)

 iI jJ kK

The value V (x) gives the total cost of transportation for the solution represented by

X. Thus the value of the feasible pattern V(X) gives the cost represented by it. In the

algorithm which is developed in the sequel a search is made for the pattern X which is

represented by the set of ordered triple (i, j, k) for which x (i, j, k) = 1 with the

understanding that the other X (i, j, k)'s are zeros.

There are n
3
 ordered triples in the three dimension array X. For convenience these are

arranged in ascending order of their corresponding costs and are indexed from 1 to n
3

(Sundara Murthy, 1973). Let SN = [1, 2,----, n
3
] be the set of n

3
 indices. Let D (i. e.

162 Dr. B. Naganna and M. Sundara Murthy

C(i, j, k)) be the corresponding array of costs and arranged them in ascending order

(i. e. if a, b  SN and a < b then D (a) ≤ D (b)). Also let the arrays R, C and T be the

array of row, column and time / facility indices of the ordered triples represented by

SN and DC be the cumulative sums of the elements of D. The arrays SN, D, DC, R,

C, T for the numerical example are given in table-4. If t  SN the (R (t), C (t), T (t)) is

the ordered triple and D (a) = C (R(a), C (a), T (a)) is the value of the ordered triple

and DC (a)=  D (i) where i=1 to a.

Definition of an Alphabet-Table and a word:

Let Lk = {a1, a2,-----, ak}, ai  SN be an ordered sequence of k indices from SN. The

pattern represented by the ordered triples whose indices are given by Lk is

independent of the order of ai in the sequence. Hence for uniqueness the indicies are

arranged in the increasing order such that ai < ai+1, i = 1, 2,----, k-1. The set SN is

defined as the "Alphabet-Table" with alphabetic order as (1, 2,----, n
3
) and the ordered

sequence Lk is defined as a "word" of length k. A word Lk is called a "sensible word”.

If ai < ai+1, for i = 1, 2,----, k-1 and if this condition is not met it is called an

"insensible word". A word Lk is said to be feasible if the corresponding pattern X is

feasible and same is with the case of infeasible and partial feasible pattern. A Partial

word Lk is said to be feasible if the block of words represented by Lk has atleast one

feasible word or, equivalently the partial pattern represented by Lk should not have

any inconsistency.

Any of the letters in SN can occupy the first place in the partial word Lk. Our interest

is only in set of words of length atmost n, since the words of length greater than n are

necessarily infeasible, as any feasible pattern can have only n unit entries in it. If k<n,

Lk is called a partial word and if k = n, it is a full length word or simply a word. A

partial word Lk represents, a block of words with Lk as a leader i. e. as its first k

letters. A leader is said to be feasible, if the block of word, defined by it has atleast

one feasible word.

Value of the word:

The value of the (partial) word Lk, V (Lk) is defined recursively as V (Lk) = V (Lk-1) +

D (ak) with V (Lo) = 0 where D (ak) is the cost array arranged such that

D (ak) < D (ak+1). V (Lk) and V(x) the values of the pattern X will be the same. Since

X is the (partial) pattern represented by Lk, (Sundara Murthy-1979)

Lower Bound of A partial word LB (Lk):

A lower bound LB (Lk) for the values of the block of words represented by

Lk = (a1, a2,----, ak) can be defined as follows.

 n-k

LB (Lk) = V (Lk) +  D (ak + j)

 j=1

 = V (Lk) + DC (ak + n-k)-DC (ak)

Feasibility criterion of a partial word:

A feasibility criterion is developed, in order to check the feasibility of a partial word

Time Dependent Bulk Transportation Problem 163

Lk+1 = (a1, a2,-----ak, ak+1) given that Lk is a feasible word. We will introduce some

more notations which will be useful in the sequel.

IC be an array where IC (j) = 1, j  J = (1, 2,----, n) represents that destination j

 is getting it supply from some source i, otherwise IC (j) = 0

LW be an array, where LW (i), is the letter in ith position of a word

 Then for a given partial word Lk = (a1, a2,----, ak)

RX be an array, where RX (i), is the total quantity supplied from the source i to the

destinations.

 The values of the arrays IC, IT, LW are as follows

IC (C (ai)) = 1, i = 1, 2,-----, k and IC (j) = 0 for other elements of j

LW (i) = i, i = 1, 2,-----, k, and LW (j) = 0, for other elements of j

RX (R(ai)) = RX (R(ai)) + DR (C(ai)), i=1, 2, ……, k and RX (j) = 0 for other

elements of j

The recursive algorithm for checking the feasibility of a partial word Lp is given as

follows

In the algorithm first we equate IX = 0. At the end if IX = 1 then the partial word is

feasible, otherwise it is infeasible. For this algorithm we have RA = R (ap+1),

CA = C (ap+1) and TA = T (ap+1).

Algorithm-1:
STEP 1: IX = 0

IS (IC (CA) = 0) IF YES GO TO 2

 IF NO GO TO 4

STEP 2: IS ((RX (RA) + DR (CA)) < SC (RA))

 IF YES GO TO 3

 IF NO GO TO 4

STEP 3: I X = 1 GO TO 4

STEP 4: STOP

We start the algorithm with a very large value say 9999 as a trial value VT. If the

value of a feasible word is known, we can as well start with that value as VT. During

the search the value of VT is improved. At the end of search the current value of VT

gives the optimal feasible word. We start with the partial word L1 = (a1) = (1). A

partial word Lp is constructed as Lp = Lp-1 * (p). Where * indicates chain

formulation. We will calculate the values of V (Lp) and LB (Lp) simultaneously. Then

two situations arises one for branching and other for continuing the search.

1. LB (Lp) < VT. Then we check whether Lp is feasible or not. If it is feasible we

proceed to consider a partial word of order (p+1). Which represents a sub-block of the

block of words represented by Lp If Lp is not feasible then consider the next partial

word p by taking another letter which succeeds ap in the position. If all the words of

order p are exhausted then we consider the next partial word of order (p-1).

2. LB (Lp) > VT. In this case we reject the partial word Lp. We reject the block of

word with Lp as leader as not having optimum feasible solution and also reject all

partial words of order p that succeeds Lp.

Now we are in a position to develop a Lexi-search algorithm to find an optimal

164 Dr. B. Naganna and M. Sundara Murthy

feasible word.

5. Algorithm-2: (Lexi-Search algorithm)

STEP 1: Initialization

 The arrays SN, D, DC, R, C, T, SC, DR, N, are made available. IC, RX,

LW, V, LB initialized to zero. The values I = 1, J = 0, VT = 9999.

STEP 2: J = J + 1

 GOTO 3

STEP 3: L (I) = J

 JA = J + N-I

 V (I) = V (I-1) + D (J)

 LB (I) = V (I) + DC (JA)-DC (J)

 GOTO 4

STEP 4: IS (LB (I) > VT) IF YES GO TO 10

 IF NO GO TO 5

STEP 5: RA = R (J)

 CA = C (J)

 GOTO 6

STEP 6: Check the feasibility of L (I) (using algorithm 1)

 IS (IX = 1) IF YES GO TO 7

 IF NO GO TO 2

STEP 7: IS (I = N) IF YES GOTO 9

 IF NO GO TO 8

STEP 8: L (I) = J

 IC (CA) = 1

 RX (RA) = RX (RA) + DR (CA)

 I = I + 1

 (I < N) GO TO 2

STEP 9: L (I) = J, L (I) is a full length word and is feasible

 VT = V (I), Record L (I) and VT

 GOTO 11

STEP 10: IS (I = 1) IF YES GO TO 12

 IF NO GO TO 11

STEP 11: I = I-1

 J = L (I)

 CA = C (J)

 RA = IR (J)

 IC (CA) = 0

 RX (RA) = R X (RA)-DR (CA)

 GOTO 2

STEP 12: STOP

The current value of VT at the end of the search is the value of the optimal feasible

word. At the end if V = 9999 it indicates that there is no feasible solution.

Time Dependent Bulk Transportation Problem 165

7. Computational Experience:
A computer program for the above algorithm is written in 'C' language and is tested

on the system Pentium IV. Random numbers are used to construct the cost matrix.

The following Table-10 gives the list of the problems tried along with the average

CPU time, in seconds required for solving them.

In the table AT represents the CPU time to construct the Alphabet Table, ET

represents the CPU time taken for the search of a feasible word. The time is

represented in seconds. In table-10, n is the number of destinations, m is the number

of sources and p is the number of time/facilities. It is seen that the time required for

the search (ET) of the optimal solution is fairly less.

Table-10

n m p AT ET

6 4 3 0. 11 0. 05

8 6 5 0. 32 0. 16

10 8 6 0. 65 1. 7

12 10 8 1. 31 2. 85

15 13 10 2. 63 3. 9

Flow chart for TDBTP

166 Dr. B. Naganna and M. Sundara Murthy

REFERENCES

1. Balas, E (1965) : An additive algorithm for solving linear programming

problems with 0-1 variables. Opns. Res., 13, pp. 517-

546.

2. Bhavani, V and

Sundara Murthy M

(2005) : Time Dependent Travelling salesman Problem,

Opsearch, 42, pp 199-227.

3. Demaio, A and

Roveda, C

(1971) : An all 0-1 algorithm for a certain class of

transportation Problems, Opns. Res. 19, pp. 1406-1418.

4. Glover. F (1965) : A Multiphase-Dual algorithm for the 0-1 Integer

programming problem, Opns. Res. 13, pp. 879-919.

5 Miller, C. E. (1960) : Integer Programming formulation of Travelling

salesman problem through ‘n’ sets of nodes, paper

presented at the 9
th
 annual convention of ORSI,

Culcutta.

6. Pandit, S. N. N.

and Sundara

murthy, M

(1975) : Allocation of sources to destinations-paper presented in

ORSI, held at Bombay.

7. Perskalla, W. P. (1966) : The Tri-substitution method for obtaining near optimal

solution to the three dimensional Assignment Problem,

Tech. Memo, No. 71, Institute of Technology,

Cleveland, Ohio.

8 Picard, J. L and

Queyaranne, M

(1978) : The Time Dependent Travelling Salesman Problem

and its applications to the Tradiness Problem in one

machine scheduling, Opns. Res., 26, pp 86-110.

9 Shila Das and

Monisha Borthakur

(2006) : A mixed Constrained (Identical) Vechical Routing

Problem for Time minimization, Opsearch, 43, pp 31-

48.

10 Srinivasan V and

Thamspson G. L

(1973) : An algorithm for assigning uses to sources in a Special

class of Transportation Problems. Opns. Res. 21, No. 1

pp. 285-295

11 Sundara Murthy,

M

(1976) : Bulk Transportation Problem, Opsearch, 13, Pp 143-

155

12 Sundara Murthy.

M

(1979) : Combinatorial programming-A pattern Recognition

approach, Ph. D. Thesis REC, Warangal, India.

13 Vanita Verma and

M. C. Puri

(1996) : A branch and bound procedure for cost minimizing

Bulk Transportation Problem, Opsearch, 33, pp:145-

161

