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ABSTRACT 

 

There is a set I = (1, 2,---, m) of m sources which produces a particular 

product, a set J = (1, 2,---, n) of n destinations which require this product and 

a set k = (1, 2,---, p) which is a time / facility. The requirement of the 

destination j  J is DR (j) and the capacity of the source i  I is SC (i). C(i, j, k) 

be the Time Dependent Bulk Transportation Cost from source ‘i’ to the 

destination ‘j’ at time / facilities k. There is a restriction that each destination 

in ‘J’ should get its requirement from any one source at any point of time / 

facility k, but the source can supply to any number of destinations subject to 

its capacity. The objective is to find the least transportation cost satisfying the 

requirements of all the destinations in ‘J’ at some point of time / facility ‘k’. 

An effective "Lexi Search" algorithm is developed using" Pattern Recognition 

Technique" and it is effective in solving for higher values of m, n and k. For 

this problem a computer programmed in 'C' language is developed for the 

algorithm and is tested. 
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1. Introduction: 

In this chapter we will study 'Time Dependent Bulk Transportation Problem" (TD 

Bulk TP) with the following characteristics. 

(i) The sources are fixed and the capacity of each source is given 

(ii) The requirements of the destinations are given 

(iii) In C(i, j, k), ‘k’ stands for the third dimension which is generally called 

time/facility, but it is not the usual continuous time. It stands for another 

independent factor which influences the cost ‘C’. The cost generally depends 

on ‘i’ and ‘j’. For example in the case of cost or distance it depends not only 
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on i, j, the third factor may be the nature of vehicle used (i. e. Petrol vehicle or 

diesel vehicle or luxury vehicle etc.). Under this consideration Miller etal. 

(1960), perskalla (1966), Picard and Queyranne (1978), Bhavani and Sundara 

Murthy (2005), S. Das and Monisha Borthakur (2006) have studied a variety 

of problems. 

(iv) A destination should get its requirement from any one source at some point of 

time / facility and a source can supply to any number of destinations subject to 

its capacity. 

(v) The bulk-transportation cost from a source to a destination at some point of 

time / facility is given. 

 

The objective is to supply the requirements of the destinations with a minimum cost 

satisfying the above conditions. 

The above Bulk Transportation without time/facility can be thought of as a two 

dimension bulk transportation problem (with cost c (i, j)). This also can be formulated 

as a 0-1 programming problem and can be solved (Balas-1965 and Glover-1965). But 

none of these methods will take the advantage of the combinatorial structure of the 

problem which is very close to that of the 'assignment problem'. Demaio and Roveda-

1971 first formulated this problem and they have developed a branch and bound 

algorithm to solve it. They also gave a practical situation where this problem arises. 

Later, Srinivasan and Thompson-1973, Vanita verma and M. C. Puri-1996 were 

developed a branch and bound algorithm for the same problem. They have formulated 

a modified transportation problem for which the optimal solution of the above 

problem will be a basic feasible solution. They believe that this algorithm is better 

than the one presented by Demaio and Roveda-1971 because their algorithm utilises 

the structure of the transportation problem. The main drawback of Demaio and 

Reveda's algorithm is a lot of calculations are required for checking the feasibility of a 

solution, and several solutions have to be recorded till the optimal solution is 

identified. The letter's algorithm ignores the simple structure of the problem, which is 

very close to that of assignment problem in finding an optimal solution. In this 

algorithm a series of transportation problems are formulated and solved. Integer 

solutions are expected at each stage. 

In the present study, takes out the drawbacks of Demaio and Roveda algorithm and 

we developed an algorithm called the Lexi-Search algorithm which takes the 

advantage of the simple structure of the problem to get an optimal feasible solution 

((a) Pandit and Sundara Murthy-1975 and (b) Sundara Murthy-1976) was presented. 

We will introduce the following notations: 

Let 

I = {i =1, 2,----, m) be the set of m sources 

J = {j =1, 2,----, n } be the set of n destinations 

T = {k =1, 2,----, p } be the set of p time / facilities 

SC = SC (i), i  S be an array, where SC (i) is the availability at source i 

DR = DR (j), j  J be an array where DR (j) is the requirement of the destination j 

C = C (i, j, k), i  I, j  J, k  T, where C (i, j, k) be the bulk-transportation Cost of 

supplying from source i to destination j at any point of time / facility k. 
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The problem is to find a solution i.e. Trip-schedule with a least total transportation 

cost in which the destinations get their requirements with the given condition. 

The time/facility constraint introduces the complexity. Hence the algorithm for 

solving the Bulk-Transportation problem of two dimensions is not directly useful. In 

the sequel a Lexi search algorithm is developed to solve this problem. 

 

 

2. Mathematical Formulation: 

 
      C (i, j, k)   X (i, j, k) 

Minimize Z = iI jJ kK 
 

Subject to                         DR (j) X (i, j, k) ≤ SC (i),  for i  I  

   j  J  kK 

                                           X (i, j, k) = 1, for j  J 

                                   i  I  kK 

                             X (i, j, k) = 0 or 1 for i  I, j  J, k  K 

X (i, j, k) = 1, indicates that the requirement at destination j is supplied from the 

source i at time/facility k. Each destination should get its requirement from one source 

only and the source can supply to any number of destinations subject to its capacity. 

The problem is to find the Trip-schedule X i. e. a solution with a least total 

transportation cost. 

In the sequel we developed a Lexi-search algorithm based on the "Pattern Recognition 

Technique" to get the optimal solution for the problem and it takes care of the simple 

combinatorial structure of the problem. 

 

 

4. The Concepts and Definitions: 

Definition of pattern: 

An indicator three dimensional array which is associated with a solution is called 

"pattern". A pattern is said to be feasible if the matrix X is feasible solution. The 

pattern given by Table-2 is a feasible solution, whereas the pattern given by table-3 is 

in feasible. 

The words pattern, solution, and word are used synonymously. 

Now V (x) be the value of the pattern X is defined as 

V (x) =        C (i, j, k) X (i, j, k) 

            iI jJ kK 

The value V (x) gives the total cost of transportation for the solution represented by 

X. Thus the value of the feasible pattern V(X) gives the cost represented by it. In the 

algorithm which is developed in the sequel a search is made for the pattern X which is 

represented by the set of ordered triple (i, j, k) for which x (i, j, k) = 1 with the 

understanding that the other X (i, j, k)'s are zeros. 

There are n
3
 ordered triples in the three dimension array X. For convenience these are 

arranged in ascending order of their corresponding costs and are indexed from 1 to n
3
 

(Sundara Murthy, 1973). Let SN = [1, 2,----, n
3
] be the set of n

3
 indices. Let D (i. e. 
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C(i, j, k)) be the corresponding array of costs and arranged them in ascending order  

(i. e. if a, b  SN and a < b then D (a) ≤ D (b)). Also let the arrays R, C and T be the 

array of row, column and time / facility indices of the ordered triples represented by 

SN and DC be the cumulative sums of the elements of D. The arrays SN, D, DC, R, 

C, T for the numerical example are given in table-4. If t  SN the (R (t), C (t), T (t)) is 

the ordered triple and D (a) = C (R(a), C (a), T (a)) is the value of the ordered triple 

and   DC (a)=  D (i)    where  i=1 to a. 

 

Definition of an Alphabet-Table and a word: 

Let Lk = {a1, a2,-----, ak}, ai  SN be an ordered sequence of k indices from SN. The 

pattern represented by the ordered triples whose indices are given by Lk is 

independent of the order of ai in the sequence. Hence for uniqueness the indicies are 

arranged in the increasing order such that ai < ai+1, i = 1, 2,----, k-1. The set SN is 

defined as the "Alphabet-Table" with alphabetic order as (1, 2,----, n
3
) and the ordered 

sequence Lk is defined as a "word" of length k. A word Lk is called a "sensible word”. 

If ai < ai+1, for i = 1, 2,----, k-1 and if this condition is not met it is called an 

"insensible word". A word Lk is said to be feasible if the corresponding pattern X is 

feasible and same is with the case of infeasible and partial feasible pattern. A Partial 

word Lk is said to be feasible if the block of words represented by Lk has atleast one 

feasible word or, equivalently the partial pattern represented by Lk should not have 

any inconsistency. 

Any of the letters in SN can occupy the first place in the partial word Lk. Our interest 

is only in set of words of length atmost n, since the words of length greater than n are 

necessarily infeasible, as any feasible pattern can have only n unit entries in it. If k<n, 

Lk is called a partial word and if k = n, it is a full length word or simply a word. A 

partial word Lk represents, a block of words with Lk as a leader i. e. as its first k 

letters. A leader is said to be feasible, if the block of word, defined by it has atleast 

one feasible word. 

 

Value of the word: 

The value of the (partial) word Lk, V (Lk) is defined recursively as V (Lk) = V (Lk-1) + 

D (ak) with V (Lo) = 0 where D (ak) is the cost array arranged such that  

D (ak) < D (ak+1). V (Lk) and V(x) the values of the pattern X will be the same. Since 

X is the (partial) pattern represented by Lk, (Sundara Murthy-1979) 

 

Lower Bound of A partial word LB (Lk): 

A lower bound LB (Lk) for the values of the block of words represented by 

Lk = (a1, a2,----, ak) can be defined as follows. 

                             n-k 

LB (Lk) = V (Lk) +    D (ak + j) 

                             j=1 

             = V (Lk) + DC (ak + n-k)-DC (ak) 

 

Feasibility criterion of a partial word: 

A feasibility criterion is developed, in order to check the feasibility of a partial word 
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Lk+1 = (a1, a2,-----ak, ak+1) given that Lk is a feasible word. We will introduce some 

more notations which will be useful in the sequel. 

IC   be an array where IC (j) = 1, j  J = (1, 2,----, n) represents that destination j 

       is getting it supply from some source i, otherwise IC (j) = 0 

LW   be an array, where LW (i), is the letter in ith position of a word 

       Then for a given partial word Lk = (a1, a2,----, ak) 

RX    be an array, where RX (i), is the total quantity supplied from the source i to the       

destinations. 

   The values of the arrays IC, IT, LW are as follows 

IC (C (ai)) = 1, i = 1, 2,-----, k and IC (j) = 0 for other elements of j 

LW (i) = i, i = 1, 2,-----, k, and LW (j) = 0, for other elements of j 

RX (R(ai)) = RX (R(ai)) + DR (C(ai)), i=1, 2, ……, k and RX (j) = 0 for other 

elements of j 

The recursive algorithm for checking the feasibility of a partial word Lp is given as 

follows 

In the algorithm first we equate IX = 0. At the end if IX = 1 then the partial word is 

feasible, otherwise it is infeasible. For this algorithm we have RA = R (ap+1),  

CA = C (ap+1) and TA = T (ap+1). 

 

Algorithm-1: 
STEP 1: IX = 0 

IS (IC (CA) = 0) IF YES GO TO 2 

                          IF NO GO TO 4 

STEP 2: IS ((RX (RA) + DR (CA)) < SC (RA)) 

            IF YES GO TO 3 

            IF NO GO TO 4 

STEP 3: I X = 1 GO TO 4 

STEP 4: STOP 

 

We start the algorithm with a very large value say 9999 as a trial value VT. If the 

value of a feasible word is known, we can as well start with that value as VT. During 

the search the value of VT is improved. At the end of search the current value of VT 

gives the optimal feasible word. We start with the partial word L1 = (a1) = (1). A 

partial word Lp is constructed as Lp = Lp-1 * (p). Where * indicates chain 

formulation. We will calculate the values of V (Lp) and LB (Lp) simultaneously. Then 

two situations arises one for branching and other for continuing the search. 

1. LB (Lp) < VT. Then we check whether Lp is feasible or not. If it is feasible we 

proceed to consider a partial word of order (p+1). Which represents a sub-block of the 

block of words represented by Lp If Lp is not feasible then consider the next partial 

word p by taking another letter which succeeds ap in the position. If all the words of 

order p are exhausted then we consider the next partial word of order (p-1). 

2. LB (Lp) > VT. In this case we reject the partial word Lp. We reject the block of 

word with Lp as leader as not having optimum feasible solution and also reject all 

partial words of order p that succeeds Lp. 

Now we are in a position to develop a Lexi-search algorithm to find an optimal 
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feasible word. 

5. Algorithm-2: (Lexi-Search algorithm) 

STEP 1:    Initialization 

                The arrays SN, D, DC, R, C, T, SC, DR, N, are made available. IC, RX,                           

LW, V, LB initialized to zero. The values I = 1, J = 0, VT = 9999. 

STEP 2:   J = J + 1 

               GOTO 3 

STEP 3:   L (I) = J 

               JA = J + N-I 

               V (I) = V (I-1) + D (J) 

               LB (I) = V (I) + DC (JA)-DC (J) 

               GOTO 4 

STEP 4:   IS (LB (I) > VT ) IF YES GO TO 10 

                                        IF NO GO TO 5 

STEP 5:  RA = R (J) 

               CA = C (J) 

               GOTO 6 

STEP 6:  Check the feasibility of L (I) (using algorithm 1) 

               IS (IX = 1) IF YES GO TO 7 

                              IF NO GO TO 2 

STEP 7:  IS (I = N) IF YES GOTO 9 

                              IF NO GO TO 8 

STEP 8:  L (I) = J 

              IC (CA) = 1 

              RX (RA) = RX (RA) + DR (CA) 

               I = I + 1 

              (I < N) GO TO 2 

STEP 9:  L (I) = J, L (I) is a full length word and is feasible 

               VT = V (I), Record L (I) and VT 

               GOTO 11 

STEP 10: IS (I = 1) IF YES GO TO 12 

                              IF NO GO TO 11 

STEP 11: I = I-1 

               J = L (I) 

               CA = C (J) 

               RA = IR (J) 

               IC (CA) = 0 

               RX (RA) = R X (RA)-DR (CA) 

               GOTO 2 

STEP 12: STOP 

The current value of VT at the end of the search is the value of the optimal feasible 

word. At the end if V = 9999 it indicates that there is no feasible solution. 
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7. Computational Experience: 
A computer program for the above algorithm is written in 'C' language and is tested 

on the system Pentium IV. Random numbers are used to construct the cost matrix. 

The following Table-10 gives the list of the problems tried along with the average 

CPU time, in seconds required for solving them. 

In the table AT represents the CPU time to construct the Alphabet Table, ET 

represents the CPU time taken for the search of a feasible word. The time is 

represented in seconds. In table-10, n is the number of destinations, m is the number 

of sources and p is the number of time/facilities. It is seen that the time required for 

the search (ET) of the optimal solution is fairly less. 

 

Table-10 

 

n m p AT ET 

6 4 3 0. 11 0. 05 

8 6 5 0. 32 0. 16 

10 8 6 0. 65 1. 7 

12 10 8 1. 31 2. 85 

15 13 10 2. 63 3. 9 

 

 
 

Flow chart for TDBTP 
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