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Abstract 
 

The main object of this paper is to study the flatness of the Projectively flat, 

Conformally flat and Conharmonically flat Hsu-structure manifold. In last the 

application of flat curvature tensor in space time is given with an example. 

 
Index Terms- Riemannian curvature Tensor, Projective curvature tensor, 

Conformal curvature tensor, Con-harmonic curvature tensor, Con-circular 

curvature tensor, Hsu-structure manifold. 
 

 

1. INTRODUCTION 

If on an even dimensional manifold Vn, n = 2m of differentiability class C
∞
, there 

exists a vector valued real linear function  , satisfying 

n
r Ia2 , (1.1a) 

XaX r2 , for arbitrary vector field X. (1.1b) 

where XX  , 0 ≤ r ≤ n and ' a ' is a real or imaginary number. 

Then {  } is said to give to Vn a Hsu-structure defined by the equations (1.1) and the 

manifold Vn is called a Hsu-structure manifold. 

 

Remark (1.1):The equation (1.1)a gives different structure for different values of ' a ' 

and 'r'. 

If r  0, it is an almost product structure, if a  0, it is an almost tangent structure, if r 

 1 and a  1, it is an almost product structure, if r  1 and a  1, it is an almost 

complex structure, if 2r  then it is a GF-structure which includes π-structure for a  

0, an almost complex structure for a  i,an almost product structure for a  1,an 

almost tangent structure for a 0. 

Let the Hsu-structure be endowed with a metric tensor g, such that 
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0),(),(  YXgaYXg r . 

Then {, g} is said to give to Vn - metric Hsu-structure and Vn is called a metric Hsu-

structure manifold. 

 

Agreement(1.1): In what follows and the above, the equations containing 

X,Y,Z…….,etc.hold for these arbitrary vector in Vn. 

The curvature tensor K, a vector -valued tri-linear function w.r.t. the connexion D is 

given by 
,),( ],[ ZDZDDZDDZYXR YXXYYX 
 (1.2a) 

where 
.],[ XDYDYX YX   (1.2b) 

   ZYXRZYXR ,,   (1.3) 

The curvature tensor for the manifold of constant curvature H is given by 

      YZXgXZYgHZYXR ,,,  . (1.4) 
The Ricci tensor in Vn is given by 

).,)((),(
1

1 ZYRCZYRic   (1.5) 

Where by ),)((
1

1 ZYRC , we mean the contraction of ZYXR ),(  with respect to first slot. 
For Ricci tensor, we also have 

),,(),( YZRicZYRic   (1.6a) 
)),(,()),((),( ZYgZYgZYRic    (1.6b) 

kC )(
1

1   (1.6c) 

Let W, C, L and V be the Projective, Conformal, Con-harmonic and Con-circular 

curvature tensors respectively given by 

].),(),([
)1(

1
),(),( YZXRicXZYRic

n
ZYXRZYXW 




 (1.7) 

        )}(),()(),(,,
2

1
,, XZYgYZXgYZXRicXZYRic

n
ZYXRZYXC  




 

].),(),([
)2)(1(

YZXgXZYg
nn

k





 (1.8) 

)].(),()(),(),(),([
)2(

1
),(),( XZYgYZXgYZXRicXZYRic

n
ZYXRZYXL  


  

(1.9) 

].),(),([
)1(

),(),( YZXgXZYg
nn

k
ZYXRZYXV 


  (1.10)

 
 

Theorem (2.1): A Hsu-structure manifold nV  1 ran  of constant Riemannian 

curvature is flat. 

 

Proof: From equation (1.4) we have the curvature tensor for the manifold of constant 

curvature tensor H is given by 

      YZXgXZYgHZYXR ,,,  . (2.1) 

Now applying  on X and Y and using equation (1.3), we get 
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      YZXXZYHZYXR  ,,,   . (2.2) 

Comparing the equation (2.1) and (2.2) then either 0H or 

       YZXgXZYgYZXXZY ,,,,     

Contracting of this equation w.r.t X, we get 

     0,1  ZYgan r  

Which is not possible, hence 0H and consequently R=0. This proves the statement. 

 

Theorem (2.2): A projectively flat Hsu-structure manifold nV , ran 1 is flat. 

 

Proof: If the manifold is Projectively flat then from equaton (1.7), we get 

       YZXRicXZYRicZYXRn ,,,1   (2.3) 

Now applying  on X and Y in equation (2.3) and using equation (1.3), we get 

        YZXRicXZYRicZYXRn  ,,,1   (2.4) 

Comparing the equation (2.3) and (2.4) then we get 

        YZXRicXZYRicYZXRicXZYRic  ,,,,   (2.5) 

Contracting of equation (2.5) w.r.t X, we get 

     0,1  ZYRican r  

From theorem ran 1  

Hence   0, ZYRic  

Now putting 0Ric  in equation (2.3), we get 0R . 

Hence the theorem. 

 

Theorem (2.3): A Conformally flat Hsu-structure manifold nV , 

    01232  rr aann is flat. 

 

Proof: If the manifold is conformally flat then from equation (1.8), we get 
        )}(),()(),(,,,2 XZYgYZXgYZXRicXZYRicZYXRn    

].),(),([
)1(

YZXgXZYg
n

k



  (2.6) 

Now applying  on X and Y in equation (2.6) and using equation (1.3), we get 

        )}(),()(),(,,,2 XZYYZXYZXRicXZYRicZYXRn     

].),(),([
)1(

YZXXZY
n

k
  


  (2.7) 

Comparing the equation (2.6) and (2.7) then we get 

    ]),(),([
)1(

)(),()(),(,, YZXgXZYg
n

k
XZYgYZXgYZXRicXZYRic 


 

    ]),(),([
)1(

)(),()(),(,, YZXXZY
n

k
XZYYZXYZXRicXZYRic   


  

Contracting of this equation w.r.t X, we get 

       0,,122  ZYgkaZYRicnan rr  (2.8a) 

   0122  YkaYnan rr   (2.8b) 

Contracting of this equation, we get 



194  Lata Bisht and Sandhana Shanker 

     01232  kaann rr  

If      01232  rr aann , then 0k . 

Putting 0k in equation (2.8a), we get Ric=0, since      01232  rr aann . Putting 

0k and Ric=0 in equation (2.6), we 

get R=0, which proves the statement. 

 

Theorem (2.4): If a Hsu-structure manifold nV ,  ran  12  is Conformally flat, then 

its scalar curvature is 0 and it is Con-harmonically flat. 

 

Proof: Putting ran 22 in equation (2.5a), we get 0k which makes equation (2.6) in 

the form 
  ).(),()(),(),(),(),(2 XZYgYZXgYZXRicXZYRicZYXRn  

 (2.9) 

Using this equation in equation (1.9), we get the last part of the statement. 

 

Theorem (2.5): If a Hsu-structure manifold nV , ran 1 is Con-circularly flat, then it 

is flat. 

 

Proof : If the manifold is Con-circular flat then from equation (1.10), we get 

].),(),([
)1(

),( YZXgXZYg
nn

k
ZYXR 


  (2.10) 

Now applying  on X and Y in equation (2.10) and using equation (1.3), we get 

].),(),([
)1(

),( YZXXZY
nn

k
ZYXR   


  (2.11) 

Contracting of this equation w.r.t X, we get 

     0,1  ZYgan r  

Which is impossible, hence 0k . Putting 0k in equation (2.10), we get R=0. Which 

proves the theorem. 

 

Theorem (2.6): A Con-harmonically flat Hsu-structure manifold nV , ran 1 is flat. 

 

Proof: If the manifold is Con-harmonically flat then from equation (1.9), we get 

  ).(),()(),(),(),(),(2 XZYgYZXgYZXRicXZYRicZYXRn    (2.12) 

Applying  on X and Y in (2.12), we get
   )(),()(),(),(),(),(2 XZYYZXYZXRicXZYRicZYXRn    . 

(2.13) 

Comparing the equation (2.12) and (2.13) then we get
 )),()(),()(),(),(),( ZYRicXZYgYZXgYZXRicXZYRic    

XZYYZXYZXRicX  (),()(),(),(    

Contracting of this equation w.r.t X, we get 

      0,,22  ZYkgZYRican r

 (2.14) 

Again contracting the equation (2.14), we get 
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   01  kan r

 If ran 1 then 0k . Putting 0k in equation (2.14), we get Ric =0, hence R=0, this 

proves the theorem. 

 

 

Application of Flat Curvature tensor in Spacetime: 

A important feature of general relativity is the concept of a curved manifold. A useful 

way of measuring the curvature of a manifold is with an object called Riemannian 

curvature tensor. This tensor measures curvature by use of an affine connection by 

considering the effect of parallel transporting a vector between two curves. The 

similarity between the result of these two parallel transport routes essentially 

quantified by the Riemannian tensor. This property of the Riemannian tensor can be 

used to describe how initially parallel geodesic diverge. This is expressed by the 

equation of geodesic deviation and mean that the tidal force experienced in a 

gravitational field are a result of the curvature of spacetime. 

Using the above procedure, the Riemannian tensor is defined as a type (1, 3) tensor 

and when fully written out explicitly contain the chirstoffel symbol and their first 

partial derivatives. The Riemannian tensor has 20 independent component. The 

vanishing of all these component over the region indicates that the spacetime is flat in 

that region. From the view point of geodesic deviation, this mean that initially parallel 

geodesic in that region of spacetime will stay parallel. 

 

Example of application: 

In Riemannian geometry, we consider the problem of finding an orthogonal coframe 
ix , i.e a collection of 1-form forming a basis of cotangent space of every point with 

ijji xx , which are closed  nidx i ....3,2,1,0  . By the Poincare lemma, the ix locally 

will have form idf for some function if on the manifold, and thus provide an isometry 

of an open subset of nV with an open subset of nR . Such a manifold is called locally 

flat. 

This problem reduces to a question on the coframe bundle of nV . Suppose we have 

such a closed coframe 

 nxx ....,,.........1 , 

If we have another coframe 

 nyy .,,.........1 , then the two coframe would be related by an orthogonal 

transformation 

 nV , if the connection 1-form is  , then we have 

 d  

On the other hand 
   dVdVd nn  

 ndVd  

   1
nn VdVd  

But   1 nn VdV is the Maurer-carton form for the orthogonal group. Therefore it obeys 
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the structural equation 

0 d  and this is just the curvature of nV ; 

0 d  

After an application of the Frobenius theorem, we can conclude that a manifold nV is 

locally flat iff its curvature tensor vanishes. 
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