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1. Introduction 

Consider the nonlinear programming problem: 

Minimize f (x) 

x 

(P) subject to g(x) ≤ 0, 

where x ∈ Rn and f and g are twice differentiable functions from Rn to R and 

Rm respectively. 

 

The first order dual problem is: 

(D1) Maximize f (u) + y′ g(u) 

    u, y 

subject to ∇{f(u) + y′g(u)} = 0;  

and y ≥ 0, 

where y ∈ Rm. By introducing an additional vector p ∈ Rn  Mangasanian [5] formulated 

the second order dual : 

 
(D2) Maximize f (u) + y′g(u) − 1 p′ ∇1[f (u) + y′ g(u)]p 

 2 

 

  u, y, p   

subject to ∇[f(u) + y′g(u)] + ∇2[f(u) + y′g(u)]p = 0, and y ≥ 0, 

 

Under appropriate conditions on f and g involving convexity, and complicated 
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restrictions on p, duality theorems were established. Subsequently, Mond [6] gave 

simpler conditions than Mangasarian, using a generalized form of convexity. This type 

of generalization was also studied by Mahajan [3] and Mahajan and Varta [4], and a 

different form of second order duality was given by Mond and Weir [7]. Mond’s 

generalization was extended to invexity by Bector. Chandra and Husain [1], by defining 

a class of functions which they called binvex. In this paper a further generalization is 

made and applied to duality. 

The proofs of the duality theorems given here follow those of Mond [6]. One significant 

practical use of duality is that it provides bounds for the value of the objective function 

when approximations are used. Second order duality may provide tighter bounds than 

first order duality because there are more parameters involved. 

This paper provides for applicability to a wider calss of functions and may give still 

tighter bounds than previously considered. 

The dual is of the form: 

 
(D3) Maximize f (u) + y′ g(u) − 

1 
q′ ∇2 [f (u) + y′ g(u)]p 

 2 

 

  u, y, p   

subject to ∇[f(u) + y′g(u)] + ∇2[f(u) + y′g(u)]p=0 and y ≥ 0, 

 

where q ∈ Rn and r ∈ Rn. In general p, q and r can be regarded as functions, although 

the operators ∇and ∇2 in the above operate only on f and g. The constraints (1.3) – (1.4) 

are the same as in (D2). 

 

2. Second Order Invexity: 

Hanson and Mond [2] introduced a slight generalization of the class of invex functions 

to a class called Type I functions for use in mathematical programming. Here we 

generalize further to second order Type 1 functions. 

 

Let K be the constraint set of (D3) given by (1.3) – (1.4) and let η(x, u), p(x, u), q(x, u) 

and r(x, u) be vector functions : K × K → Rn. 

The objective function f(x) is said to be a second order Type 1 objective function and 

gi(x), i = 1, 2, ...., m is said to be a second order Type I constraint function at u € K with 

respect to the function ῃ(x,u), p(x,u), q(x,u) and r(x,u) if for all x € K 

 

 



Second Order Invexityand Duality Innon-Linear Programming Problem 13 

If p, q and r are all zero vectors, then (2.1) and (2.2) are the definitions of Type 1 

functions given by Hanson and Mond [2]. 

 

3. Second Order Duality Theorems : Theorem 1. (Weak Duality) 

Let x satisfy the constraints of (P) and u, y, p, r satisfy the constraints of (D3). Let f and 

gi, i = 1, 2, ..., m be second order Type I functions defined over the constraints sets of 

(P) and (D3).  

 

Then infimum (P) ≥ supermum (D3) 

Proof : 

 

 

Theorem 2. (Duality) 

Suppose x* is optimal in (P) and x* satisfies one of the usual constraint qualifications of 

mathematical programming, which makes the Kuhn-Tucker conditions at x* necessary 

conditions for a minimum. Then there exists y ∈ Rm such that (x*y, p = q = r = 0) is 

feasible for (D3) and the corresponding values of (P) and (D3) are equal. If in addition 

(2.1) and (2.2) are satisfied for all feasible solutions of (D3) then x* and (x*, y, p = q = 

r = 0) are optimal for (P) and (D3) respectively. 

 

Proof:  

The Kuhn-Tucker conditions for a minimum at x* are that there exists y ∈ Rm such that  

∇f(x*) + ∇y′g(x*) = 0 

y′g(x*) = 0 and y ≥ 0 

 

so that point (x*, y, p = q = r = 0) is feasible for (D3) and the values of (P) and (D3) are 

equal, and it follows from Theorem 1 that x* and (x*, y, p = q = r = 0) are optimal for 

(P) and (D3). 

Since p = q = r = 0 at optimum, in which case the second order dual reduces to the first 

order dual, there may seem to be no point in having the additional complication of 
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introducing the extra functions p, q and r in the approximating dual are not necessarily 

zero, and the second order dual may be used to give a tighter bound than the first order 

dual for the value of the primal objective function. 

Note that in the proof of Theorem 2, it would be sufficient for either q or r to be zero and 

not necessarily both. 

 

Consider the problem : 

 
 

Note that (3.4) implies that x1 ≥ 0 and hence (3.2) implies that x1 ≥ 0. The minimal 

value is clearly 0 at the point [
0
0

].  

Suppose we do not know this, and desire to examine the value of an approximate 

solution. 

To illustrate second order duality let us compare a lower bound to the minimal value 

given by this approximation (u1 = 1, u2 = 1) in problem (D3) with a lower bound in 

(D1). The value of (P) at point [
1
1

] is 3, 

which is thus an upper bound to the true optimal value. However, as follows, note that 

(D1) does not have a feasible solution; so it does not provide a lower bound. 
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which contradicts (3.7) and thus there is no feasible solution for (D1). 

 

We now find expressions for y, η, p, q and r for which the functions f, g1, g2, g3 are 

second order Type 1 and satisfy the constraints of (D3). Such expressions are not 

necessarily unique and in this paper are assigned rather arbitrary although it happens 

that we find a set that is best possible. In general, finding such a set could be a 

mathematical programming problem in itself, but since we are looking for bounds such 

a formality can be avoided, and from a practical point of view, such a set need not be 

best possible. 

 

4. Conditions for f, g1, g2, g3 to be second order Type I at u1=1, u2=1. 

(a) For f(x); 

 
where the arguments (x, u) have been omitted for notational convenience. Since x1 ≥ 0 

and x2 ≥ 0, we require at most 

 

(a) For f(x); 
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5. Conditions for f, g1, g2, g3 to satisfy the constraints of (D3) at u1 = 1, 

u2 = 1. 
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it remains to be shown that with these values of p, q and r the functions f, g1, g2 and 

g3 are second order Type 1 functions. 

 

The conditions (4.2), (4.3), (4.4) and (4.5) become 

 
which are all satisfied if we put η1 = –1 and η2 = 0. 

 

So f, g, g and g are second order Type I function at [
1
1

].  

 

Since the optimal value of (P) is 0 and the objective value of (D3) at u1 = 1, u2 = 1 is 

also 0 for the values of η, y, p, q and r that we have obtained, these values are best 

possible by Theorem 1, though not necessarily unique. Of course in a general problem 

we would not know the optimal value of the primal problem, and would not know if the 
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value of η, y, p, q, and r best possible, but any set of values satisfying the conditions 

imposed will give a lower bound for the optimal value of the primal problem. 
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