Fuzzy Join - Semidistributive Lattice

K. Nithya¹ and V.Vinoba²

¹Research Scholar (Part Time – Mathematics), Bharathidhasan University, Trichy-2, Tamil Nadu, India.

²Assistant Professor, K.N. Government Arts College for Women, Thanjavur-613007, Tamil Nadu, India.

Abstract

In this Paper, Fuzzy Join- Semidistributive Lattice – Definition of Fuzzy Join-Semidistributive Lattice - Characterization theorem are given.

Keywords: Fuzzy Lattice, Fuzzy Modular Lattice, Fuzzy Distributive Lattice, Fuzzy Join-Semidistributive Lattice and Fuzzy Meet-Semidistributive Lattice.

INTRODUCTION

The Concept of Fuzzy Lattice was already introduced by Ajmal,N[1], S.Nanda[4] and WilCox,L.R [5] explained modularity in the theory of Lattices, G.Gratzer[2], BarDalo, G.H and Rodrigues,E[3] Stern,m[6] explained semimodular Lattices, M.Mullai and B.Chellappa[8] explained Fuzzy L-ideal and V.Vinoba and K.Nithya[7] Explained fuzzy modular pairs in Fuzzy Distributive Lattice. A few definitions and results are listed that the fuzzy Join-semidistributive lattice using in this paper we explain fuzzy Join-semidistributive lattice, Characterization theorem of Fuzzy Join-Semidistributive lattice and some examples are given.

Definition: 1.1

A Fuzzy lattice L is called a Fuzzy join-semi distributive if $\mu(a \lor b) = \mu(a \lor c) \Rightarrow \mu(a \lor b) = \mu(a) \lor \mu(b \lor c)$, for all $\mu(a), \mu(b), \mu(c) \in L$.

Theorem: 1.1

Every Fuzzy join – semi distributive lattice is fuzzy lattice and converse is not true.

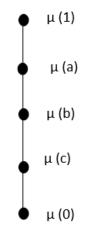
Proof:

Given L is a Fuzzy join – semi distributive lattice $\Rightarrow \mu(a \lor b) = \mu(a) \lor \mu(b \lor c), \text{ for all } \mu(a), \mu(b), \mu(c) \in L.$ To prove L is a Fuzzy Lattice. That is to prove $\mu(a \lor b) = \mu(a \lor c)$, for all $\mu(a), \mu(b), \mu(c) \in L.$ Let $\mu(a), \mu(b), \mu(c)$ be arbitrary. Then $\mu(a \lor b) = \mu(a) \lor \mu(b \lor c)$ $\geq \min\{ \mu(a), \mu(b \land c) \}$ $\geq \min\{ \mu(a), \min\{ \mu(b), \mu(c) \}\}$ $\geq \min\{ \mu(a), \min\{ \mu(c), \mu(b) \}\}, \text{ by commutative law}$ $\geq \min\{ \mu(a), \mu(c \land b) \}$ $= \mu(a) \lor (c \land b)$ $= \mu(a \lor c), \text{ for all } \mu(a), \mu(b), \mu(c) \in L.$ Hence L is a Fuzzy Lattice.

The converse need not be true.

(i.e) Every Fuzzy lattice need not be Fuzzy join- semi distributive. We shall verify it by the following example.

Consider the Fuzzy lattice of following figure.



This Fuzzy lattice is not Fuzzy join-semi distributive.

Here

$$\mu(a \lor b) = \mu(1)$$

$$\mu(a \lor c) = \mu(1)$$

$$\mu(b \land c) = \mu(0)$$

$$\mu(a) \lor \mu(b \land c) \ge \min\{ \mu(a), \mu(b \land c) \}$$

$$\ge \min\{ \mu(a), \mu(0) \}$$

$$= \mu(a)$$

86

Fuzzy Join - Semidistributive Lattice

 $\begin{array}{ll} Thus \ \mu(a \lor b) \ = \ \mu(a \lor c) \ , \ but \ \mu(a \lor b) \neq \ \mu(a) \lor \mu(b \land c) \\ for \ all \ \mu(a), \ \mu(b), \ \mu(c) \in L. \end{array}$

 \Rightarrow L is not a Fuzzy join-semi distributive lattice.

Theorem: 1.2

Every Fuzzy distributive lattice is Fuzzy join –semi distributive and the converse is not true.

Proof Given L is a Fuzzy distributive lattice. $\Rightarrow \mu(a) \lor \mu(b \land c) = \mu(a \lor b) \land \mu(a \lor c) \text{ for all } \mu(a), \mu(b), \mu(c) \in L. \quad \longrightarrow \quad (1)$

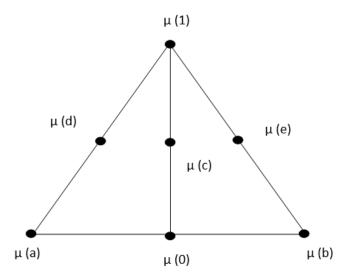
To prove: L is Fuzzy join-semi distributive Lattice. For let $\mu(a)$, $\mu(b)$, $\mu(c) \in L$ be arbitrary and $\mu(a \lor b) = \mu(a \lor c)$ $\mu(a) \lor \mu(b \land c) = \mu(a \lor b) \land \mu(a \lor c)$, by (1) $\ge \min\{ \mu(a \lor b), \mu(a \lor c) \}$ $\ge \min\{ \mu(a \lor b), \mu(a \lor b) \}$ $= \mu(a \lor b)$. Thus $\mu(a \lor b) = \mu(a \lor c) \implies \mu(a \lor b) = \mu(a) \lor \mu(b \land c)$, for all $\mu(a), \mu(b), \mu(c) \in L$.

 \Rightarrow L is a Fuzzy join-semi distributive lattice.

The converse need not be true.

(i.e) Every Fuzzy join-semi distributive lattice need not be Fuzzy distributive lattice. We shall verify it by the following example.

Consider the lattice S7 of following figure



This fuzzy lattice is Fuzzy join-semi distributive but not fuzzy distributive.

Here

 $\mu(a) \lor \mu(d \land b) \ge \min\{ \mu(a), \mu(d \land b) \}$ $\ge \min\{ \mu(a), \mu(a) \}$ $= \mu(a) \lor \mu(a)$ $= \mu(a)$ $\mu(a \lor d) \land \mu(a \lor b) \ge \min\{ \mu(a \lor d), \mu(a \lor b) \}$ $\ge \min\{ \mu(d), \mu(1) \}$ $= \mu(d)$ Therefore $\mu(a) \lor \mu(d \land b) \ne \mu(a \lor d) \land \mu(a \lor b)$

\Rightarrow S₇ is not Fuzzy distributive.

Theorem: 1.3

A Join- Fuzzy semi distributive lattice L is Fuzzy distributive if and only if L does not contain a Fuzzy sublattice isomorphic to S_7 .

Proof. Assume that a Fuzzy join semi distributive lattice L is Fuzzy distributive lattice

To prove: L does not contain a Fuzzy sublattice isomorphic to S_7 . Suppose L contain a Fuzzy sublattice isomorphic to S_7 Then L is not Fuzzy distributive. This is a contradiction. Hence L does not contain a Fuzzy sublattice isomorphic to S_7 . Conversely, Assume that a Fuzzy Join-semi distributive L does not contain Fuzzy sublattice isomorphic to S_7 .

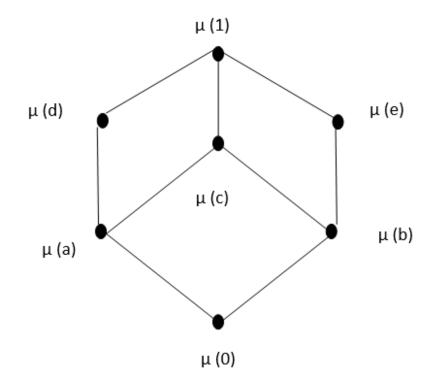
To Prove: L is Fuzzy distributive. Suppose L is not Fuzzy distributive. Then L contain a Fuzzy sublattice isomorphic to S_7 . This is Contradiction. Hence L is a Fuzzy distributive lattice.

Theorem: 1.4

Every Fuzzy meet-semi distributive lattice need not be Fuzzy join-semi distributive lattice.

Proof. By an example,

88



Consider the Fuzzy lattice S₇ of following figure.

This Fuzzy lattice is Fuzzy meet – semi distributive but not Fuzzy join-Semi distributive.

Here $\mu(c \lor d) \ge \min\{ \mu(c), \mu(d) \}$ $\ge \min\{ \mu(c), \mu(e) \}$ $= \mu(c) \lor \mu(e)$ $= \mu(1)$ $\mu(c) \lor \mu (d \land e) \ge \min\{ \mu(c), \mu (d \land e) \}$ $\ge \min\{ \mu(c), \mu (o) \}$ $= \mu(c) \lor \mu(0)$ $= \mu(c)$ Therefore $\mu(c) \lor \mu (d \land e) \neq \mu(c \lor d)$

 \Rightarrow S₇ is not Fuzzy Join- Semi distributive Lattice.

Definition : 1.2

A Fuzzy Lattice satisfying the above theorem is called upper locally Fuzzy distributive.

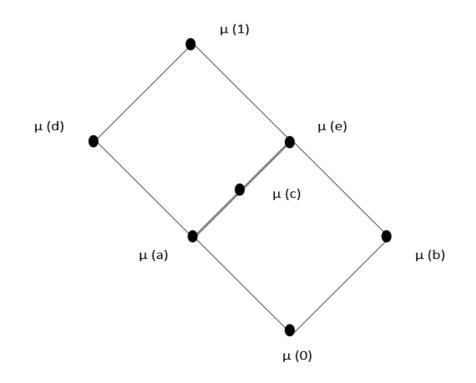
Theorem: 1.5

Every Fuzzy join-semi distributive lattice need not be Fuzzy meet-semi distributive lattice.

Proof

By an example

Consider the Fuzzy lattice S₇ of following figure.



This Fuzzy lattice is Fuzzy Join-Semi distributive but not Fuzzy meet-Semi distributive. Here $\mu(c \land a) \ge \min\{ \mu(c), \mu(a) \}$ $\ge \min\{ \mu(c), \mu(b) \}$ $= \mu(c \land b)$ $= \mu(0)$ $\mu(c) \land \mu(a \lor b) \ge \min\{ \mu(c), \mu(a \lor b) \}$ $\ge \min\{ \mu(c), \mu(e) \}$ $= \mu(c) \land \mu(e)$

 $= \mu(c)$

Therefore $\mu(c \land a) \neq \mu(c) \land \mu(a \lor b)$

 \Rightarrow S₇ is not Fuzzy meet- semi distributive.

90

Definition: 1.3

A Fuzzy lattice satisfying above theorem is called lower locally Fuzzy distributive.

Theorem: 1.6

Fuzzy Dual of Fuzzy meet-semi distributive lattice is a Fuzzy join-semi distributive lattice.

Proof: Given L is a Fuzzy meet-semi distributive lattice.

 $\Rightarrow \mu(a \land b) = \mu(a \land c) \text{ implies } \mu(a \land b) = \mu(a) \land \mu(b \lor c),$ for all $\mu(a)$, $\mu(b)$, $\mu(c) \in L$. $\Rightarrow Fuzzy \text{ dual of above is } \mu(a \lor b) = \mu(a \lor c) \text{ implies } \mu(a \lor b) = \mu(a) \lor \mu(b \land c),$ for all $\mu(a)$, $\mu(b)$, $\mu(c) \in \overline{L}$, the Fuzzy dual of L.

 $\Rightarrow \overline{L}$ is a Fuzzy Join-Semi distributive.

Theorem: 1.7

Fuzzy dual of Fuzzy Join-semi distributive lattice is a Fuzzy meet-semi distributive lattice.

Proof:

Given L is a Fuzzy join-semi distributive lattice.

 $\Rightarrow \mu(a \lor b) = \mu(a \lor c)$ implies $\mu(a \lor b) = \mu(a) \lor \mu(b \land c)$,

for all $\mu(a)$, $\mu(b)$, $\mu(c) \in L$,

 \Rightarrow Fuzzy dual of above $\mu(a \land b) = \mu(a \land c)$ implies $\mu(a \land b) = \mu(a) \land \mu(b \lor c)$,

for all $\mu(a)$, $\mu(b)$, $\mu(c) \in L$ the Fuzzy dual of L.

 \Rightarrow L is a Fuzzy meet- semi distributive lattice.

CONCLUSION

This paper is proved that Every Fuzzy join – semi distributive lattice is fuzzy lattice and converse is not true, Every Fuzzy distributive lattice is Fuzzy join –semi distributive and the converse is not true, A Join- Fuzzy semi distributive lattice L is Fuzzy distributive if and only if L does not contain a Fuzzy sublattice isomorphic to S_7 , Every Fuzzy meet-semi distributive lattice need not be Fuzzy join-semi distributive lattice, Every Fuzzy join-semi distributive lattice need not be Fuzzy meet-semi distributive lattice, Fuzzy Dual of Fuzzy meet-semi distributive lattice is a Fuzzy joinsemi distributive lattice and Fuzzy dual of Fuzzy Join-semi distributive lattice is a Fuzzy meet-semi distributive lattice.

REFERENCES

- [1] Ajmal.N., Fuzzy lattices, Inform.Sci, 79(1994) 271-291.
- [2] Gratzer.G., General Lattice Theory, Academic Press Inc. 1978.
- [3] BarDalo, G.H and Rodrigues, E. Complements in Modular and Semimodular Lattices, Portugaliae Mathematice, Vol.55 Fasc.3-1998.
- [4] S.Nanda., Fuzzy Lattice, Bull.Cal.Math.Soc.81(1989).
- [5] Wilcox, L.R., "Modularity in the theory of Lattices", Bull.Amer.Math.Soc.44-50,1938.
- [6] STerin, M. Semimodular Lattices. Teubner-Text Zur Mathematik, Stuttgart-Leipzig 1991, ISBN 3-8154.
- [7] V.Vinoba and K.Nithya, "Fuzzy Modular Pairs in Fuzzy Distributive Lattice" IJFSRS:8(1), June 2015, PP.79-81.
- [8] M.Mullai and B.Chellappa, Fuzzy L-ideal Acta Ciencia India, Vol.XXXVM, No.2, 525(2009).