Lehmer-3 Mean Labeling of Some Disconnected Graphs

¹S. Somasundaram, ²S. S. Sandhya and ³T. S. Pavithra

¹Professor in mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India.
²Assistant Professor in mathematics, Sree Ayyappa College for Women, Chunkankadai- 629003, Kanyakumari, India.
³Assistant Professor in Mathematics, St. John's College of Arts and Science, Ammandivilai-629204, Kanyakumari, India.

Abstract

A graph G=(V,E) with p vertices and q edges is called Lehmer-3 mean graph, if it is possible to label vertices xEV with distinct label f(x) from 1,2,3,.....q+1 in such a way that when each edge e=uv is labeled with $f(e=uv) = \left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$ (or) $\left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$, then the edge labels are distinct. In this case f is called Lehmer-3 mean labeling of G. In this paper we investigate Lehmer-3 mean labeling of some standard graphs

Keywords: Graph, Path, Cycle, Comb.

1. INTRODUCTION

A graph considered here are finite undirected and simple. The vertex set and edge set of a graph are denoted by V(G) and E(G) respectively. For detailed survey Gallian survey [1] is referred and standard terminologies and notations are followed from Harary [2]. We will find the brief summary of definitions and information necessary for the present investigation.

Definition 1.1

A graph G=(V,E) with P vertices and q edges is called Lehmer -3 mean graph, if it is possible to label vertices x \in V with distinct label f(x) from 1,2,3,.....q+1 in such a way that when each edge e=uv is labeled with f(e=uv)= $\left[\frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2}\right]$ (or) $\left[\frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2}\right]$, then the edge labels are distinct. In this case f is called Lehmer -3 mean labeling of G.

Definition 1.2

A path P_n is obtained by joining u_i to the consecutive vertices u_{i+1} for $1 \le i \le n$

Definition 1.3

Comb is a graph obtained by joining a single pendant edge to each vertex of a path

Definition 1.4

A closed path is called a cycle of G.

Definition 1.5

 $P_n \Theta K_{1,2}$ is a graph obtained by attaching $K_{1,2}$ to each vertex of P_n

Definition 1.6

 $P_n OK_{1,3}$ is a graph obtained from the path attaching $K_{1,3}$ to each of its vetices

Definition 1.7

 $P_n \Theta$ K₃ is a graph connected by a complete graph K₃ in its each vertex

2. MAIN RESULTS

Theorem: 2.1 mC_n is a Lehmer -3 mean graph for $n \ge 3$ and $m \ge 1$

Proof:

Let the vertex set of mC_n be V=V₁ \cup V₂ \cup \cup Vm where V_i={v_i¹,v_i²,.... v_i^m } and the edge set of mCn is E=E₁ \cup E₂ \cup ... \cup E_m, where E_i={e_i¹,e_i²,.... e_i^n }.

134

A function $f:V(mC_n) \rightarrow \{1,2,\ldots,q+1\}$ is defined as $f(u_i^{j})=n(i-1)+j$; $1 \le i \le m, 1 \le j \le n$. Then the set of labels of the edges of mC_n are $\{1,2,\ldots,mn\}$ Hence mC_n is a lahmer -3 mean graph.

Example: 2.2

The Lehmer -3 mean labeling of $3C_6$ is shown below.

Theorem: 2.3

 $mC_n \cup P_k$ is a Lehmer -3 mean graph for m,K ≥ 1 and n ≥ 3

Proof:

let mC_n be the m copies of C_n and P_k be the path of length k, the vertex set of mC_n be $V=V_1\cup V_2\cup\ldots\ldots\cup V_m$ where $V_i=\{v_i^1,v_i^2,\ldots..,v_i^n\}$ and the edge set of mC_n is $E=E_1\cup E_2\cup\ldots\ldots\cup E_m$. where $E_i=\{e_i^1,e_i^2,\ldots.e_i^n\}$

Let U_1, U_2, \ldots, U_k be the vertices of P_k .

The function f:V(mC_n \cup P_k) \rightarrow {1,2,...,q+1} is defined as f(v_i^j)=n(i-1)+j;1\leq i\leq m, 1\leq j\leq n and f(u_i)=mn+i ;1 \leq i \leq k.

Then the set of labels of edges of mC_n are distinct $\{1, 2, \dots, mn\}$

The set of labels of edges of P_k is $\{mn+1,mn+2,\dots,mn+k-1\}$

Thus $mC_n \cup P_k$ forms a Lehmer -3 mean graph.

Example: 2.4

Lehmer -3 mean labeling of $3C_6 \cup P_5$ is given below.

Figure:2

Theorem: 2.5

 $mC_n \cup C_k$ is a Lehmer -3 mean graph for $m \ge 1$ and $n, k \ge 3$

Proof:

Let mC_n be the m copies of C_n and C_k be any cycle with K vertices. The graph has mn+k number of vertices and edges. The vertex set of mC_n be $V=V_1\cup V_2\cup\ldots\ldots\cup V_m$, where $V_i=\{V_i^1, v_i^2, \ldots\ldots, V_i^n\}$ and the edge set of mC_n is $E=E_1\cup E_2\cup\ldots\ldots\cup E_m$ where $E_i=\{e_i^1, e_i^2, \ldots, e_i^n\}$

Let $u_1, u_2, \ldots u_n$ be the cycle C_k .

Define a function f:V(mC_n \cup C_k) \rightarrow [1,2,...,q+1} as f(v_i)=n(i-1)+j; 1≤i≤m, 1≤j≤n,

 $f(u_i){=}mn{+}i \hspace*{0.2cm} ; \hspace*{0.2cm} 1{\leq}i{\leq}k$

Then the edges of mC_n and C_k are{1,2,...mn} and {mn+1,mn+2,....mn+k}respectively

Hence $mC_n \cup C_k$ is a Lehmer-3 mean graph.

Example: 2.6

The graph $3C_4 \cup C_6$ has 18 vertices and the same number of edges. The pattern is given below.

Figure: 3

Theorem: 2.7

m $C_n \cup (P_1 \odot K_1)$ be a Lehmer-3 mean graph

Proof:

Let G be a graph obtained from the union of m times C_n and $(P_1 \odot K_1)$ C_n be a cycle with n vertices $u_1, u_2, \dots u_n$ respectively Let $(P_1 \odot K_1)$ be a comb with vertices as $v_1, v_2 \dots v_1$; $w_1, w_2 \dots w_1$ Define a function f: $V(G) \rightarrow \{1, 2, \dots, q+1\}$ defined by

 $\begin{array}{ll} f(u^{j}_{i})=\ n(i\text{-}1)+j & ; & l\leq i\leq m, \ l\leq j\leq n \\ f(v_{k})=\ mn+(2k\ \text{-}1) & ; & l\leq k\leq l \\ f(w_{k})=\ mn+2k & ; & l\leq k\leq l \end{array}$

Thus we obtain distinct edge labelings. Hence $m \: C_n \cup (\: P_1 \Theta K_1)$ be a Lehmer-3 mean graph

Example: 2.8

 $3C_6 \cup (P_4 \odot K_1)$ is a Lehmer-3 mean graph

Theorem: 2.9

m $C_n \cup (P_1 \Theta K_{1,2})$ be a Lehmer-3 mean graph

Proof:

Let G be a graph obtained from the union of mC_n and $(P_1 \Theta K_{1,2})$

Let mCn be the n copies of Cn and let $P_1 \odot K_{1,2}$ be the graph with vertices $v_1, v_2...v_1$; $w_1, w_2...w_1$ and $z_1, z_2..z_1$.

Let the vertices of mC_n be $U=U_1\cup U_2\cup\ldots\ldots\cup U_n$ where $U_i=\{u_i^{\ 1},u_i^{\ 2},u_i^{\ 3},\ldots\ldots,u_i^{\ n}\}$ and the edges of mC_n is $E=E_1\cup E_2U\ldots\ldots\cup E_n$, where $E_i=\{e_i^{\ 1},e_i^{\ 2},\ldots.e_i^{\ n}\}$.

Let V_1, V_2, \ldots, V_1 and $W_1, W_2, \ldots, W_1, Z_1, Z_2, \ldots, Z_l$ be the vertices of (P₁O K_{1,2})

Define a function f:V(G) \rightarrow {1,2,....,q+1} by f(u_i^j) = n(i-1)+j ; 1 \leq i \leq m , 1 \leq j \leq n f(v_k) = mn+(3k-2) ; 1 \leq k \leq l f(w_k) = mn+(3k-1) ; 1 \leq k \leq l $f(z_k) = mn + (3k)$; $1 \leq k \leq l$

Thus the edge labelings are distinct .

Hence $mC_n \cup (P_1 \odot K_{1,2})$ is a Lehmer -3 mean graph.

Example: 2.10

 $3C_4 \cup (P_5 \odot K_{1,2})$ is a Lehmer -3 mean graph.

Theorem: 2.11

 $mC_n \cup (P_1 O K_{1,3})$ is a Lehmer -3 mean graph.

Proof:

Let G be a graph obtained from the union of mC_n and $(P_1 O K_{1,3})$

Let mC_n be the m copies of C_n and let $P_1 O$ $K_{1,3}$ be the graph with $v_1, v_2...v_1$; $w_1, w_2...w_l$; $x_1, x_2...x_l$ and $y_1, y_2...y_l$ etc.

Let the vertices of mC_n be U=U₁ \cup U₂ \cup U₃.....U_n where U_i={U_i¹,U_i²,....U_iⁿ}

And the edges of mC_n be $E=E_1 \cup E_2 \cup \dots E_n$ where $E_i = \{e_i^1, e_i^2, \dots, e_i^n\}$.

Let v_1, v_2, \dots, v_l ; w_1, w_2, \dots, w_l ; x_1, x_2, \dots, x_l ; y_1, y_2, \dots, y_l be the vertices of (P₁O K_{1,3})

Define a function f:V(G) \rightarrow {1,2,....,q+1} by f(u_i^j) =n(i-1)+j ; 1≤i≤n $\begin{array}{lll} f(v_k){=}mn{+}(4k{-}3) & ; & 1{\leq}k{\leq}l \\ f(w_k){=}mn{+}(4k{-}2) & ; & 1{\leq}k{\leq}l \\ f(x_k){=}mn{+}(4k{-}1) & ; & 1{\leq}k{\leq}l \\ f(y_k){=}mn{+}4k & ; & 1{\leq}k{\leq}l \end{array}$

Thus the edge labels are distinct.

Hence $mC_n \cup (P_1 \odot K_{1,3})$ is a Lehmer -3 mean graph.

Example: 2.12

 $3C_4 \cup (P_4 \odot K_{1,3})$ is a Lehmer -3 mean graph.

Theorem:2.13

m $C_n \cup (P_1 \Theta K_3)$ be a Lehmer-3 mean graph

Proof

Let G be a graph obtained from the union of m times C_n and $(P_1 \odot K_3)$

Let C_n be a graph with n vertices

Let (P₁ Θ K₃) be a graph with vertices as v₁,v₂...v₁ ; w₁,w₂...w₁ and x₁,x₂...x₁ respectively

140

Define a function f: V(G) \rightarrow {1,2,... q+1} defined by

$$\begin{split} f(u^{j}_{i}) &= n(i\text{-}1) + j \quad ; \qquad 1 \leq i \leq m, \ 1 \leq j \leq n \\ f(v_{k}) &= mn + (4k - 3) \ ; \qquad 1 \leq k \leq l \\ f(w_{k}) &= mn + (4k - 2) \quad ; \qquad 1 \leq k \leq l \\ f(x_{k}) &= mn + (4k - 1) \ ; \qquad 1 \leq k \leq l \end{split}$$

Thus the distinct edge labels are obtained

Hence $m C_n \cup (P_1 \Theta K_3)$ forms a Lehmer-3 mean graph

Example: 2.14

3C₆ A (P₄OK₃) is a Lehmer-3 mean graph

Figure :7

REFERENCE

- J.A Gallian 2010, A dynamic survey of graph labeling. The electronic journal of combinatories 17 # DS6
- [2] Harary.F 1988 Graph theory, Narosa Publication House reading, New Delhi
- [3] S.Somasndram and R.Ponraj 2003 Mean labeling of Graphs, National Academy of Science Letter Vol 26 (2013), p210-213
- [4] S Somasundaram and R Ponraj and S S Sandhya 'Harmonic mean labeling of graphs' communicated to journal of combinatorial mathematics and combinatorial computing.
- [5] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Lehmer-3 Mean `Labeling of graphs" communicated to "International Journal of Mathematical Forum".
- [6] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Some Results on Lehmer-3 Mean Labeling of graphs" communicated to "Journal of Discrete Mathematics and Cryptography".