Intuitionistic Ultra Filter and Convergency of Filters

K. Suguna Devi, R. Raja Rajeswari and N. Durga Devi

Department of Mathematics, Sri Parasakthi College for Women, Courtallam, Tamil Nadu, India.

Abstract

The aim of this paper is to introduce an intuitionistic ultra filter via IS sets and study some of its properties.

AMS subject classification: 54C10, 54C08. **Keywords:** Intuitionistic set, Intuitionistic filter, Intuitionistic ultra filter.

1. Introduction and Preliminaries

The dual notion of filter is an ideal. A filter in normal course can be viewed as locating scheme. A filter space X is the collection of subsets of X, that might contain what one is locating for either a point of X or a subset of X. This basic definition of a filter on a set ensures the finite intersection property of a filter. Filter was introduced in general topology by Henri Cartan in 1937 along with Bourbaki. Cartan idea of filter was obtained as a way of removing the countability restriction by use of sequences. On general topology, the notion of a filter on a topological space X, became one of the basic tools used to describe the convergence in general topological spaces together with the notion of a set. Hence the notion of filters and ultra filters is a powerful tool in topology and analysis. The concept of intuitionistic fuzzy set introduced by Krassimir T. Atanassov [1]. In this paper the study of intuitionistic filters are extended by defining the ultra filters. Filter points and convergence of filters are defined and studied via intuitionistic sets.

Definition 1.1. [2] Let X be a nonempty fixed set. An intuitionistic set (IS for short) A is an object having the form $A = \langle X, A^1, A^2 \rangle$ where A^1 and A^2 are subsets of X satisfying $A^1 \cap A^2 = \phi$. The set A^1 is called the set of members of A, while A^2 is called the set of non members of A.

Definition 1.2. [2] Let X be a nonempty set. $A = \prec X$, $A^1, A^2 \succ$ and $B = \prec X$, $B^1, B^2 \succ$ be intuitionistic sets on X and let $\{A_i : i \in J\}$ be an arbitrary family of IS's in X, where $A^i = \prec X$, $A_i^{-1}, A_i^{-2} \succ$. Then

- (a) $A \subseteq B$ if and only if $A^1 \subseteq B^1$ and $B^2 \subseteq A^2$.
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- (c) $\cup A_i = \prec X, \cup A_i^1, \cap A_i^2 \succ$.
- (d) $\cap A_i = \prec X , \cap A_i^1, \cup A_i^2 \succ$
- (e) $\tilde{X} = \prec X, X, \phi \succ$
- (f) $\tilde{\phi} = \prec X, \phi, X \succ$.

Definition 1.3. [9] An intuitionistic filter ($\mathcal{I}_{\mathcal{F}}$ for short) on a nonempty set X is a family of IS's in X satisfying the following axioms:

- (1) $\tilde{\phi} \notin \mathcal{I}_{\mathcal{F}}$
- (2) If $F \in \mathcal{I}_{\mathcal{F}}$ and $H \supset F$, then $H \in \mathcal{I}_{\mathcal{F}}$.
- (3) If $F \in \mathcal{I}_{\mathcal{F}}$ and $H \in \mathcal{I}_{\mathcal{F}}$, then $F \cap H \in \mathcal{I}_{\mathcal{F}}$.

In this case, the pair $(X, \mathcal{I}_{\mathcal{F}})$ is called an intuitionistic filter.

Example 1.4. [9] Let $X = \{a, b\}$ and consider the family $\mathcal{I}_{\mathcal{F}} = \{X, A_1, A_2\}$ where $A_1 = \prec X, \{a\}, \{b\} \succ$ and $A_2 = \prec X, \{a\}, \phi \succ$. Then $(X, \mathcal{I}_{\mathcal{F}})$ is an intuitionistic filter on X.

Definition 1.5. [4] Let X be a nonempty set and $p \in X$ be a fixed element in X. Then $\tilde{p} = \prec X, \{p\}, \{p\}^c \succ$ is called an intuitionistic point(IP for short) in X.

Definition 1.6. [2] An intuitionistic topology (IT for short) on a nonempty set X is a family τ of IS's in X satisfying the following axioms:

- $(T_1) \ \tilde{\phi}, \tilde{X} \in \tau.$
- (T_2) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- $(T_3) \cup G_i \in \tau$ for any arbitrary family $\{G_i : i \in J\} \subseteq \tau$. In this case the pair (X, τ) is called an intuitionistic topological space(ITS for short) and any IS in τ is known as an intuitionistic open set (IOS for short) in X.

Definition 1.7. [2] Let $(X, \tau_1), (X, \tau_2)$ be two ITS's on X. Then τ_1 is said to be contained in τ_2 (in symbols $\tau_1 \subseteq \tau_2$ if $G \in \tau_2$ for each $G \in \tau_1$. In this case we also say that τ_1 is coarser than τ_2 .

2. Intuitionistic ultra filter

In this chapter, we introduced the intutionistic ultra filter and study some of its basic properties.

Definition 2.1. An intuitionistic filter $\mathcal{I}_{\mathcal{F}}$ on X is called an intuitionistic ultra filter ($\mathcal{I}_{\mathcal{UF}}$ for short) on X if and only if $\mathcal{I}_{\mathcal{F}}$ is not properly contained in any other intuitionistic filter on X. In other words there does not exist any other intuitionistic filter which is strictly finer than $\mathcal{I}_{\mathcal{F}}$.

That is $\mathcal{I}_{\mathcal{F}}$ is an intutionistic ultra filter $\Leftrightarrow \mathcal{I}_{\mathcal{F}*} \supset \mathcal{I}_{\mathcal{F}} \Rightarrow \mathcal{I}_{\mathcal{F}*} = \mathcal{I}_{\mathcal{F}}$ for each intuitionistic filter $\mathcal{I}_{\mathcal{F}*}$ on X.

Remark 2.2. From above, an intutionistic ultra filter on X is a maximal element of the collection of all intutionistic filters on X partially ordered by the inclusion relation C.

Example 2.3. Let $X = \{a, b, c\}$ and consider the family $\mathcal{I}_{\mathcal{UF}} = \{X, A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9, A_{10}, A_{11}, A_{12}, A_{13}, A_{14}, A_{15}, A_{16}, A_{17}, A_{18}\}$, where $A_1 = \prec X, \phi$, $\{a, b\} \succ, A_2 = \prec X, \{a\}, \phi \succ, A_3 = \prec X, \{b\}, \phi \succ, A_4 = \prec X, \{c\}, \phi \succ, A_5 = \prec X, \{a, b\}, \phi \succ, A_6 = \prec X, \{a, c\}, \phi \succ, A_7 = \prec X, \{b, c\}, \phi \succ, A_8 = \prec X, \{a\}, \{b\} \succ, A_{10} = \prec X, \{c\}, \{b\} \succ, A_{11} = \prec X, \{c\}, \{a\} \succ, A_{12} = \prec X, \{b, c\}, \{a\} \succ, A_{13} = \prec X, \{a, c\}, \{b\} \succ, A_{14} = \prec X, \{c\}, \{a, b\} \succ, A_{15} = \prec X, \{a\} \succ, A_{16} = \prec X, \phi, \{b\} \succ, A_{17} = \prec X, \phi, \phi \succ, A_{18} = \prec X, X, \phi \succ$. Then $\mathcal{I}_{\mathcal{UF}}$ is an intuitionistic ultra filter on X.

Example 2.4. Let $X = \{a, b, c\}$ and consider the family $\mathcal{I}_{\mathcal{F}1} = \{\tilde{X}, A_1\}$ where $A_1 = \prec X, \{a, b\}, \phi \succ$. It is not an intuitionistic ultra filter because $\mathcal{I}_{\mathcal{F}1}$ is properly contained in any other intuitionistic filter on X.

Theorem 2.5. Every intuitionistic filter on a nonempty set X is contained in an intuitionistic ultra filter on X.

Proof. Let $\mathcal{I}_{\mathcal{F}}$ be an intuitionistic filter on X and \mathcal{C} be the collection of all intuitionistic filters on X which contains $\mathcal{I}_{\mathcal{F}}$. So that \mathcal{C} is nonempty as atleast $\mathcal{I}_{\mathcal{F}} \in \mathcal{C}$. By Remark 2.2, \mathcal{C} is partially ordered by the inclusion relation. Let \mathcal{D} be a linearly ordered intuitionistic subset of \mathcal{C} , so that for any two intuitionistic members $\mathcal{I}_{\mathcal{F}1}$ and $\mathcal{I}_{\mathcal{F}2}$ of \mathcal{C} , then either $\mathcal{I}_{\mathcal{F}1} \subset \mathcal{I}_{\mathcal{F}2}$ or $\mathcal{I}_{\mathcal{F}2} \subset \mathcal{I}_{\mathcal{F}1}$. Let $\mathcal{E} = \bigcup \{\mathcal{I}_{\mathcal{F}\alpha} : \mathcal{I}_{\mathcal{F}\alpha} \in \mathcal{D}\}$. Clearly, \mathcal{E} is nonempty. Now, as $\mathcal{I}_{\mathcal{F}\alpha}$ is an intuitionistic filter on X then $\tilde{\phi} \notin \mathcal{I}_{\mathcal{F}\alpha}$ for any $\mathcal{I}_{\mathcal{F}\alpha} \in \mathcal{D}$. Hence, $\tilde{\phi} \notin \mathcal{E}$. Let $F = \prec X$, F_1^{-1} , $F_1^2 \succ \in \mathcal{E}$. Then F belongs to $\mathcal{I}_{\mathcal{F}\alpha}$ for atleast one

Hence, $\phi \notin \mathcal{E}$. Let $F = \prec X$, F_1^{-1} , $F_1^2 \succ \in \mathcal{E}$. Then F belongs to $\mathcal{I}_{\mathcal{F}\alpha}$ for atleast one $\mathcal{I}_{\mathcal{F}\alpha} \in \mathcal{D}$. Since each $\mathcal{I}_{\mathcal{F}\alpha}$ is an intuitionistic filter and if $H \supseteq F$, then $H \in \mathcal{I}_{\mathcal{F}\alpha}$. Hence $H \in \bigcup \{\mathcal{I}_{\mathcal{F}\alpha} : \mathcal{I}_{\mathcal{F}\alpha} \in D\} = \mathcal{E}$.

$$\begin{split} \mathbf{H} &\in \bigcup \left\{ \mathcal{I}_{\mathcal{F}\alpha} : \mathcal{I}_{\mathcal{F}\alpha} \in D \right\} = \mathcal{E}. \\ \text{Let} \prec \mathbf{X}, F_1^{-1}, F_1^{-2} \succ \text{and} \prec \mathbf{X}, F_2^{-1}, F_2^{-2} \succ \in \mathcal{E}. \text{ Then } \prec \mathbf{X}, F_1^{-1}, F_1^{-2} \succ \in \mathcal{I}_{\mathcal{F}\alpha} \text{ and } \prec \mathbf{X}, F_1^{-1}, F_1^{-2} \succ \in \mathcal{I}_{\mathcal{F}\beta} \text{ for some } \mathcal{I}_{\mathcal{F}\alpha} \text{ and } \mathcal{I}_{\mathcal{F}\beta} \text{ respectively in } \mathcal{D}. \text{ As } \mathcal{D} \text{ is linearly ordered} \\ \text{in IS set, either } \mathcal{I}_{\mathcal{F}\alpha} \subset \mathcal{I}_{\mathcal{F}\beta} \text{ or } \mathcal{I}_{\mathcal{F}\beta} \subset \mathcal{I}_{\mathcal{F}\alpha}. \text{ Hence, both } \prec \mathbf{X}, F_1^{-1}, F_1^{-2} \succ \text{ and } \prec \mathbf{X}, F_2^{-1}, \\ F_2^{-2} \succ \text{ are contained in either in } \mathcal{I}_{\mathcal{F}\alpha} \text{ or in } \mathcal{I}_{\mathcal{F}\beta}. \text{ Since } \mathcal{I}_{\mathcal{F}\alpha} \text{ and } \mathcal{I}_{\mathcal{F}\beta} \text{ is an intuitionistic} \\ \text{filter. Therefore, } \prec \mathbf{X}, F_1^{-1}, F_1^{-2} \succ \cap \prec \mathbf{X}, F_2^{-1}, F_2^{-2} \succ \text{ belongs to either in } \mathcal{I}_{\mathcal{F}\alpha} \text{ or in } \end{split}$$

 $\mathcal{I}_{\mathcal{F}\beta}$. Hence $\prec X, F_1^{1}, F_1^{2} \succ \cap \prec X, F_2^{1}, F_2^{2} \succ \in \mathcal{E}$. Therefore \mathcal{E} is an intuitionistic filter on X. As \mathcal{E} is finer than every member of \mathcal{D} and as such \mathcal{E} is an upperbound of \mathcal{D} . Thus it is proved that in a partially ordered nonempty set \mathcal{C} every linearly ordered intuitionistic subset has an upperbound. Hence \mathcal{C} must contain a maximal element say $\prec X, F^{*1}, F^{*2} \succ$ which implies, By definition 2.1, $\prec X, F^{*1}, F^{*2} \succ$ is an intuitionistic ultra filter containing $\mathcal{I}_{\mathcal{F}}$.

3. Characterization of intuitionistic ultra filters

Theorem 3.1. An intuitionistic filter $\mathcal{I}_{\mathcal{F}}$ on a nonempty set X is an intuitionistic ultra filter on X if and only if $\mathcal{I}_{\mathcal{F}}$ contains all those intuitionistic subsets of X which intersect every member of $\mathcal{I}_{\mathcal{F}}$.

Proof. Let $\mathcal{I}_{\mathcal{F}}$ be an intuitionistic filter on X, such that $\mathcal{I}_{\mathcal{F}}$ contains all those intuitionistic subsets of X which intersect every member of $\mathcal{I}_{\mathcal{F}}$. To prove that $\mathcal{I}_{\mathcal{F}}$ is an intuitionistic ultra filter on X, it is enough to prove that there does not exist any other intuitionistic filter on X which is strictly finer than $\mathcal{I}_{\mathcal{F}}$.

If possible, let $\mathcal{I}_{\mathcal{F}}^*$ be an intuitionistic filter on X, which is strictly finer than $\mathcal{I}_{\mathcal{F}}$. Now let $F^* = \prec X$, F^{*1} , $F^{*2} \succ \mathcal{I}_{\mathcal{F}}^*$ and being an intuitionistic filter on X, each member of $\mathcal{I}_{\mathcal{F}}^*$ intersects every member of $\mathcal{I}_{\mathcal{F}}^*$. Hence F^* intersects every member of $\mathcal{I}_{\mathcal{F}}$ and as $\mathcal{I}_{\mathcal{F}} \subset \mathcal{I}_{\mathcal{F}}^*$, it is concluded that F^* intersects every member of $\mathcal{I}_{\mathcal{F}}$ and so $F^* \in \mathcal{I}_{\mathcal{F}}$, which implies $\mathcal{I}_{\mathcal{F}}^* \subset \mathcal{I}_{\mathcal{F}}$. But this is a contradiction to the assumption that $\mathcal{I}_{\mathcal{F}}^*$ is an intuitionistic filter on X which is strictly finer than $\mathcal{I}_{\mathcal{F}}$. Hence $\mathcal{I}_{\mathcal{F}}$ is an intuitionistic ultra filter on X.

Conversely, assume $\mathcal{I}_{\mathcal{F}}$ be an intuitionistic ultra filter on X. Now choose A to be any arbitrary intuitionistic subset of X, which intersects every member of $\mathcal{I}_{\mathcal{F}}$. Consider a collection $\mathcal{I}_{\mathcal{F}}^* = \{F^* : F^* \supset A \cap F \text{ for some } F \in I_F\}$. If $F \in \mathcal{I}_{\mathcal{F}}$, then $F \supset A \cap F$, so $F \in \mathcal{I}_{\mathcal{F}}^*$, which implies $\mathcal{I}_{\mathcal{F}} \subset \mathcal{I}_{\mathcal{F}}^*$.

As per the construction, A intersects every member of $\mathcal{I}_{\mathcal{F}}$. Hence $A \cap F \neq \tilde{\phi}$ for all $F \in \mathcal{I}_{\mathcal{F}}$ and $F^* \supset A \cap F$. Therefore $F^* \neq \tilde{\phi}$ for all $F^* \in \mathcal{I}_{\mathcal{F}}^*$. Thus $\tilde{\phi} \notin \mathcal{I}_{\mathcal{F}}^*$.

Let $F^* \in \mathcal{I}_{\mathcal{F}}^*$. Then $F^* \supset A \cap F$ for some $F \in \mathcal{I}_{\mathcal{F}}$. If G^* is an IS set and $G^* \supset F^*$, then obviously $G^* \supset A \cap F$ for some $F \in \mathcal{I}_{\mathcal{F}}$ implies $G^* \in \mathcal{I}_{\mathcal{F}}^*$. That is, all the super set of F^* also is in $\mathcal{I}_{\mathcal{F}}^*$. Let F_1^* and F_2^* be both members of $\mathcal{I}_{\mathcal{F}}^*$. Then $F_1^* \supset A \cap F_1$ and $F_2^* \supset A \cap F_2$ for some $F_1, F_2 \in \mathcal{I}_{\mathcal{F}}$. Hence $F_1^* \cap F_2^* \supset (A \cap F_1) \cap (A \cap F_2) =$ $A \cap (F_1 \cap F_2) = A \cap F$, where $F = F_1 \cap F_2 \in \mathcal{I}_{\mathcal{F}}$. Thus $F_1^* \cap F_2^* \supset A \cap F$ for some $F \in \mathcal{I}_{\mathcal{F}}^*$ and so $F_1^* \cap F_2^* \in \mathcal{I}_{\mathcal{F}}^*$. Thus $\mathcal{I}_{\mathcal{F}}^*$ is an intuitionistic filter on X such that $\mathcal{I}_{\mathcal{F}}^*$ contains $\mathcal{I}_{\mathcal{F}}$. But it is given that $\mathcal{I}_{\mathcal{F}}$ is an intuitionistic ultra filter on X. Therefore $\mathcal{I}_{\mathcal{F}}^*$ $\supset \mathcal{I}_{\mathcal{F}} \Rightarrow \mathcal{I}_{\mathcal{F}}^* = \mathcal{I}_{\mathcal{F}}$. Further $\tilde{X} \in \mathcal{I}_{\mathcal{F}}$ and $A \cap \tilde{X} = A$ and $A \supset A \cap \tilde{X}$ implies $A \in \mathcal{I}_{\mathcal{F}}^*$ or $A \in \mathcal{I}_{\mathcal{F}}$. Thus $\mathcal{I}_{\mathcal{F}}$ contains all those intuitionistic subsets of X which intersect every member of $\mathcal{I}_{\mathcal{F}}$.

Theorem 3.2. A class $\mathcal{F} = \{ \prec X, A_i^{\ 1}, A_i^{\ 2} \succ : i \in J \}$ of nonempty intuitionistic subsets of X is an intuitionistic ultra filter on X if the following conditions are satisfied (i) \mathcal{F} has

F.I.P. (ii) For some intuitionistic set $\prec X$, A^1 , $A^2 \succ$ of X, either $\prec X$, A^1 , $A^2 \succ \in \mathcal{F}$ (or) $\tilde{X} - \langle X, A^1, A^2 \succ \in \mathcal{F}$.

Proof. Given \mathcal{F} is a nonempty family of intuitionistic subsets of X and \mathcal{F} has F.I.P, then by a Theorem 2.8 in [9], there exists atleast one intuitionistic filter say $\mathcal{I}_{\mathcal{F}}^* = \{ \prec X, B_j^{-1}, B_j^{-2} \succ : j \in k \}$ containing \mathcal{F} . To prove that \mathcal{F} is an intuitionistic ultra filter on X, it is enough to prove that there is no other intuitionistic filter on X, which is strictly finer than \mathcal{F} .

If possible, let $\mathcal{I}_{\mathcal{F}}^*$ be an intuitionistic filter on X, which is strictly finer than \mathcal{F} and take an intuitionistic sets $\{ \prec X, B_j^{-1}, B_j^{-2} \succ : j \in k\} \in \mathcal{I}_{\mathcal{F}}^*$, so that $\tilde{X} - \{ \prec X, B_j^{-1}, B_j^{-2} \succ \} \notin \mathcal{I}_{\mathcal{F}}^*$ for some *j*. Since $\mathcal{I}_{\mathcal{F}}^*$ is strictly finer than $\mathcal{F}, \tilde{X} - \langle X, B_j^{-1}, B_j^{-2} \succ \notin \mathcal{F}$. Then $\{ \prec X, B_j^{-1}, B_j^{-2} \succ \} \in \mathcal{F}$, which shows that every member of $\mathcal{I}_{\mathcal{F}}^*$ is a member of \mathcal{F} . But this is a contradiction to our assumption that $\mathcal{I}_{\mathcal{F}}^*$ is an intuitionistic filter on X strictly finer than \mathcal{F} . Therefore \mathcal{F} is an intuitionistic ultra filter on X.

Theorem 3.3. An intuitionistic filter $\mathcal{I}_{\mathcal{F}}$ on a set X is an intuitionistic ultra filter if and only if for any two intuitionistic subsets $A = \langle X, A^1, A^2 \rangle$ and $B = \langle X, B^1, B^2 \rangle$ of X such that $\langle X, A^1, A^2 \rangle \cup \langle X, B^1, B^2 \rangle \in \mathcal{I}_{\mathcal{F}}$, either $\langle X, A^1, A^2 \rangle \in \mathcal{I}_{\mathcal{F}}$ or $\langle X, B^1, B^2 \rangle \in \mathcal{I}_{\mathcal{F}}$.

Proof. Suppose that $\mathcal{I}_{\mathcal{F}}$ is an intuitionistic ultra filter on X and let $\prec X, A^1, A^2 \succ \cup \prec X, B^1, B^2 \succ \in \mathcal{I}_{\mathcal{F}}$. If possible, let $\prec X, A^1, A^2 \succ \notin \mathcal{I}_{\mathcal{F}}$ and $\prec X, B^1, B^2 \succ \notin \mathcal{I}_{\mathcal{F}}$. Now both $\prec X, A^1, A^2 \succ$ and $\prec X, B^1, B^2 \succ$ can not be empty for otherwise $\prec X, A^1, A^2 \succ \cup \prec X, B^1, B^2 \succ$ will also be empty and belong to $\mathcal{I}_{\mathcal{F}}$. Assume that $B \neq \prec X, \phi, X \succ$.

Now, consider the collection $\mathcal{G}_{\mathcal{IF}} = \{G = \langle X, G_1^1, G_1^2 \rangle \text{ and } G \cup A \in \mathcal{I}_F\}$. Clearly $\mathcal{G}_{\mathcal{IF}}$ is nonempty because atleast $B \in \mathcal{G}_{\mathcal{IF}}$, since $\langle X, A^1, A^2 \rangle \cup \langle X, B^1, B^2 \rangle \in \mathcal{I}_F$. As $\langle X, \phi, X \rangle \cup \langle X, A^1, A^2 \rangle = \langle X, A^1, A^2 \rangle \notin \mathcal{I}_F$ implies $\langle X, \phi, X \rangle \notin \mathcal{G}_{\mathcal{IF}}$. If $\langle X, G_1^1, G_1^2 \rangle \in \mathcal{G}_{\mathcal{IF}}$, then $G \cup A \in \mathcal{I}_F$. So if $\langle X, H^1, H^2 \rangle \supset \langle X, G_1^1, G_1^2 \rangle \in \mathcal{I}_F$, then $G \cup A \in \mathcal{I}_F$. So if $\langle X, H^1, H^2 \rangle \supset \langle X, G_1^1, G_1^2 \rangle \in \mathcal{I}_F$, as \mathcal{I}_F is an intuitionistic filter. Hence $\langle X, H^1, H^2 \rangle \in \mathcal{G}_{\mathcal{IF}}$.

Let $\prec X, G_1^1, G_1^2 \succ$ and $\prec X, G_2^1, G_2^2 \succ$ be in $\mathcal{G}_{\mathcal{IF}}$. Then $\prec X, G_1^1, G_1^2 \succ \cup \prec X, A^1, A^2 \succ \in \mathcal{I}_{\mathcal{F}}$ and $\prec X, G_2^1, G_2^2 \succ \cup \prec X, A^1, A^2 \succ \in \mathcal{I}_{\mathcal{F}}$. Since $\mathcal{I}_{\mathcal{F}}$ is an intuitionistic filter their intersection also belongs to $\mathcal{I}_{\mathcal{F}}$. So ($\prec X, G_1^1, G_1^2 \succ \cup \prec X, A^1, A^2 \succ \in \mathcal{I}_{\mathcal{F}}$. Since $\mathcal{I}_{\mathcal{F}}$ is an intuitionistic filter their intersection also belongs to $\mathcal{I}_{\mathcal{F}}$. So ($\prec X, G_1^1, G_1^2 \succ \cup \prec X, A^1, A^2 \succ \in \mathcal{I}_{\mathcal{F}}$. That is ($\prec X, G_1^1, G_1^2 \succ \cap \prec X, G_2^1, G_2^2 \succ \cup \prec X, A^1, A^2 \succ \in \mathcal{I}_{\mathcal{F}}$. That is ($\prec X, G_1^1, G_1^2 \succ \cap \prec X, G_2^1, G_2^2 \succ \cup \prec X, A^1, A^2 \succ \in \mathcal{I}_{\mathcal{F}}$. Hence, $\prec X, G_1^1, G_1^2 \succ \cap \prec X, G_2^1, G_2^2$ $\succ \in \mathcal{G}_{\mathcal{I}\mathcal{F}}$. Thus, $\mathcal{G}_{\mathcal{I}\mathcal{F}}$ is an intuitionistic filter on X.

If $F = \langle X, F^1, F^2 \rangle \in \mathcal{I}_F$ then $\langle X, F^1, F^2 \rangle \cup \langle X, A^1, A^2 \rangle$ being a super set of $\langle X, F^1, F^2 \rangle$ is also in \mathcal{I}_F . By the definition of $\mathcal{G}_{\mathcal{I}F}, F \in \mathcal{G}_{\mathcal{I}F}$. Therefore $\mathcal{I}_F \subseteq \mathcal{G}_{\mathcal{I}F}$, which implies that $\mathcal{G}_{\mathcal{I}F}$ is an intuitionistic filter finer than \mathcal{I}_F . But this is a contradiction.So either $\langle X, A^1, A^2 \rangle \in \mathcal{I}_F$ or $\langle X, B^1, B^2 \rangle \in \mathcal{I}_F$.

Conversely, assume for any two intuitionistic subsets $A = \langle X, A^1, A^2 \rangle$ and $B = \langle X, B^1, B^2 \rangle$ of X such that $\langle X, A^1, A^2 \rangle \cup \langle X, B^1, B^2 \rangle \in \mathcal{I}_F$ then either $\langle X, A^1, A^2 \rangle \in \mathcal{I}_F$ or $\langle X, B^1, B^2 \rangle \in \mathcal{I}_F$.

Let A be any intuitionistic subset of X. As $\mathcal{I}_{\mathcal{F}}$ is an intuitionistic filter, $\prec X, X, \phi \succ$

 $\in \mathcal{I}_{\mathcal{F}} \text{ or } \prec X, X, \phi \succ = \prec X, A^1, A^2 \succ \cup (\prec X, X, \phi \succ \neg \prec X, A^1, A^2 \succ) \in \mathcal{I}_{\mathcal{F}} \text{ by}$ assumption, either $\prec X, A^1, A^2 \succ \in \mathcal{I}_{\mathcal{F}} \text{ or } \tilde{X} - \prec X, A^1, A^2 \succ \in \mathcal{I}_{\mathcal{F}}.$ Hence by Theorem 3.2, $\mathcal{I}_{\mathcal{F}}$ is an intuitionistic ultra filter on X.

Theorem 3.4. Every intuitionistic filter $\mathcal{I}_{\mathcal{F}}$ on a set X is the intersection of all the intuitionistic ultra filters finer than $\mathcal{I}_{\mathcal{F}}$.

Proof. Let $\mathcal{H} = \cap \{\mathcal{G} : \mathcal{G} \text{ is an intuitionistic ultra filter containing } \mathcal{I}_{\mathcal{F}} \}$. As $\mathcal{I}_{\mathcal{F}}$ is contained in \mathcal{G} for all \mathcal{G} . Then $\mathcal{I}_{\mathcal{F}} \subset \mathcal{H}$. Now if $A = \langle X, A^1, A^2 \rangle$ be any member of \mathcal{H} . Then $A \in \mathcal{G}$ for all \mathcal{G} . If possible, let $A \notin \mathcal{I}_{\mathcal{F}}$, then every $F \in \mathcal{I}_{\mathcal{F}}$ intersects $\tilde{X} - A$. Hence there exists an intuitionistic filter [9] $\mathcal{I}_{\mathcal{F}}^*$ which is finer than $\mathcal{I}_{\mathcal{F}}$ and contains $\tilde{X} - A$. By Theorem 2.5, every intuitionistic filter on a nonempty set X is contained in an intuitionistic ultra filter on X. That is there exists an intuitionistic ultra filter \mathcal{G}^* finer than $\mathcal{I}_{\mathcal{F}}$. But $\tilde{X} - A \in \mathcal{I}_{\mathcal{F}}^* \Rightarrow A \notin \mathcal{I}_{\mathcal{F}}^*$ and \mathcal{G}^* is finer than $\mathcal{I}_{\mathcal{F}}^*$. Therefore $A \notin \mathcal{G}^*$ which is a contradiction. Hence $A \in \mathcal{I}_{\mathcal{F}}$. Also $A \in \mathcal{H} \Rightarrow A \in \mathcal{I}_{\mathcal{F}}$. Therefore $\mathcal{H} = \mathcal{I}_{\mathcal{F}}$.

Theorem 3.5. Let $\mathcal{I}_{\mathcal{F}}$ be an intuitionistic ultra filter on a set X. Then the intersection of all the members of $\mathcal{I}_{\mathcal{F}}$ is either empty or a singleton intuitionistic subset of X.

Proof. Let $\{\prec X, A_i^{\ 1}, A_i^{\ 2} \succ : \prec X, A_i^{\ 1}, A_i^{\ 2} \succ \in \mathcal{I}_{\mathcal{F}}\}$ be the collection of all intuitionistic sets in the intuitionistic ultra filter $\mathcal{I}_{\mathcal{F}}$ on X and let $\mathcal{G} = \bigcap \{\prec X, A_i^{\ 1}, A_i^{\ 2} \succ : \prec X, A_i^{\ 1}, A_i^{\ 2} \succ \in \mathcal{I}_{\mathcal{F}}\}$ denote the intersection of intuitionistic members of $\mathcal{I}_{\mathcal{F}}$. If $\mathcal{G} = \tilde{\phi}$, then there is nothing to prove.

If $\mathcal{G} \neq \phi$, then it is to prove that \mathcal{G} has a singleton intuitionistic subset of X. Since $\mathcal{G} \neq \phi$, there is atleast one element $\tilde{p} = \prec X$, $\{p\}$, $\{p\}^c \succ \in X$ such that $\tilde{p} \in \mathcal{G}$. If possible, let $\tilde{q} \neq \tilde{p}$ be such that $\tilde{q} \in \mathcal{G}$. By Theorem 3.2, either $\tilde{p} \in \mathcal{I}_{\mathcal{F}}$ (or) $\tilde{X} - \tilde{p} \in \mathcal{I}_{\mathcal{F}}$ for some \tilde{p} . If $\tilde{p} \in \mathcal{I}_{\mathcal{F}}$, then as $\tilde{q} \neq \tilde{p}$, $\tilde{q} \notin \tilde{p}$ and so $\tilde{q} \notin \mathcal{G}$ which is a contradiction to our assumption that $\tilde{q} \in \mathcal{G}$. Similarly if $\tilde{X} - \tilde{p} \in \mathcal{I}_{\mathcal{F}}$ then $\tilde{p} \notin \tilde{X} - \tilde{p} \in \mathcal{I}_{\mathcal{F}}$ and hence $\tilde{p} \notin \mathcal{G}$ which is again contradiction to our assumption that $\tilde{p} \in \mathcal{G}$. Hence $\tilde{q} = \tilde{p}$. Therefore \mathcal{G} is either empty or a singleton intuitionistic subset of X.

4. Convergence of Intuitionistic filters

Definition 4.1. Let $\mathcal{I}_{\mathcal{F}}$ be an intuitionistic filter on a nonempty set X and A be any intuitionistic subset of X. Then $\mathcal{I}_{\mathcal{F}}$ is said to be eventually in the IS set A, where $A = \prec X$, A^1 , $A^2 \succ$ if and only if $A \in \mathcal{I}_{\mathcal{F}}$.

Definition 4.2. Let $\mathcal{I}_{\mathcal{F}}$ be an intuitionistic filter on a nonempty set X and A be any intuitionistic subset of X. Then $\mathcal{I}_{\mathcal{F}}$ is said to be frequently in the IS set A if and only if A intersects every member of $\mathcal{I}_{\mathcal{F}}$ i.e. $A \cap F \neq \tilde{\phi}$ for all $F \in \mathcal{I}_{\mathcal{F}}$.

Remark 4.3. From above definitions it is clear that if $\mathcal{I}_{\mathcal{F}}$ is eventually in A, then $\mathcal{I}_{\mathcal{F}}$ is frequently in A because when $\mathcal{I}_{\mathcal{F}}$ is eventually in A then, $A \in \mathcal{I}_{\mathcal{F}}$ implies $A \cap F$ is the intersection of two members of intuitionistic filter $\mathcal{I}_{\mathcal{F}}$ is again in $\mathcal{I}_{\mathcal{F}}$. Since $\tilde{\phi} \notin \mathcal{I}_{\mathcal{F}}$, it follows that $A \cap F \neq \tilde{\phi}$ for all $F \in \mathcal{I}_{\mathcal{F}}$. i.e. A intersects every member of $\mathcal{I}_{\mathcal{F}}$. Hence $\mathcal{I}_{\mathcal{F}}$

is frequently in A $\mathcal{I}_{\mathcal{F}}$ is eventually in A implies $\mathcal{I}_{\mathcal{F}}$ is frequently in A.

The converse of above is not true as will be clear from example given below.

 $X = \{a, b, c\}, \mathcal{I}_{\mathcal{F}} = \{\prec X, X, \phi \succ, \prec X, \{a, b\}, \phi \succ \}.$

Let $A = \prec X$, $\{a\}, \phi \succ$.

 $\mathcal{I}_{\mathcal{F}}$ is an intuitionistic filter on X and A intersects every member of $\mathcal{I}_{\mathcal{F}}$, so $\mathcal{I}_{\mathcal{F}}$ is frequently in A. But as $A \notin \mathcal{I}_{\mathcal{F}}$, $\mathcal{I}_{\mathcal{F}}$ is not eventually in A.

Remark 4.4. If all the intuitionistic sets A for which intuitionistic filter is frequently in A is also eventually in A, then the intuitionistic filter is an intuitionistic ultra filter. This is sustained by Example 2.3, in which the intuitionistic ultra filter $\mathcal{I}_{U\mathcal{F}}$ is both frequently and eventually in every subset of $\mathcal{I}_{U\mathcal{F}}$.

Definition 4.5. Let (X, τ) be an intuitionistic topological space and $\mathcal{N}_{\tilde{p}}$ be the collection of all τ -intuitionistic neighbourhoods of an intuitionistic point $\tilde{p} = \prec X$, $\{p\}, \{p\}^c \succ \in X$.

Theorem 4.6. Let (X, τ) be an intuitionistic topological space and \tilde{p} be an intuitionistic point in X. Then the τ -intuitionistic neighbourhood of \tilde{p} say $\mathcal{N}_{\tilde{p}\tau}$ is an intuitionistic filter on X.

Proof. Let \tilde{p} be an intuitionistic point in X, $\prec X, X, \phi \succ$ is an intuitionistic neighbourhood of \tilde{p} and as such belongs to $\mathcal{N}_{\tilde{p}\tau}$ and so $\mathcal{N}_{\tilde{p}\tau}$ is nonempty. By Definition 4.5, each member of $\mathcal{N}_{\tilde{p}\tau}$ being an intuitionistic neighbourhood of \tilde{p} must contain \tilde{p} and as such no member of $\mathcal{N}_{\tilde{p}\tau}$ is empty and so $\prec X, \phi, X \succ \notin \mathcal{N}_{\tilde{p}\tau}$. If A is an intuitionistic neighbourhood of \tilde{p} , then a superset of A is also an intuitionistic neighbourhood of \tilde{p} . Hence $A \in \mathcal{N}_{\tilde{p}\tau}$ and B $\supset A$ then $B \in \mathcal{N}_{\tilde{p}\tau}$. Also it is known that if A and B are intuitionistic neighbourhoods of \tilde{p} , then $A \cap B$ is also a intuitionistic neighbourhood of \tilde{p} and as belongs $\mathcal{N}_{\tilde{p}\tau}$. Therefore $\mathcal{N}_{\tilde{p}\tau}$ is an intuitionistic filter on X.

Remark 4.7. Let (X, τ) be an intuitionistic topological space and let \tilde{p} be an intuitionistic point in X. Then the τ -intuitionistic neighbourhood of the IS point \tilde{p} , $\mathcal{N}_{\tilde{p}}$ is an intuitionistic filter in X and it is denoted by $\mathcal{N}_{\tilde{p}\tau}$. Here after $\mathcal{N}_{\tilde{p}\tau}$ is called the neighbourhood intuitionistic filter \tilde{p} with respect to τ .

Example 4.8. Let $X = \{a, b, c\}$ and $\tau = \{ \prec X, \phi, X \succ, \prec X, \{a\}, \phi \succ, \prec X, \{a, b\}, \phi \succ, \prec X, \{b, c\}, \phi \succ, \prec X, \{b\}, \phi \succ, \prec X, \phi, \phi \succ \prec X, X, \phi \succ \}$ be the given intuitionistic topology on X.

Let $\tilde{a} = \langle X, \{a\}, \{b, c\} \rangle$ and $\tilde{b} = \langle X, \{b\}, \{a, c\} \rangle$ be two intuitionistic points in X. Then $\mathcal{N}_{\tilde{a}\tau} = \{\langle X, \{a\}, \phi \rangle, \langle X, \{a, b\}, \phi \rangle, \langle X, \{a, c\}, \phi \rangle, \langle X, X, \phi \rangle\}$ and $\mathcal{N}_{\tilde{b}\tau} = \{\langle X, \{b\}, \phi \rangle, \langle X, \{a, b\}, \phi \rangle, \langle X, \{b, c\}, \phi \rangle, \langle X, X, \phi \rangle\}$ are intuitionistic filters on X.

Definition 4.9. Let (X, τ) be an intuitionistic topological space and let $\mathcal{I}_{\mathcal{F}}$ be an intuitionistic filter on X. Then $\mathcal{I}_{\mathcal{F}}$ is said to τ -intuitionistic converge to an intuitionistic point $\tilde{p} = \prec X$, $\{p\}, \{p\}^c \succ \in X$ if and only if $\mathcal{I}_{\mathcal{F}}$ is eventually in every τ -intuitionistic

neighbourhood of \tilde{p} . In that case, we write $\mathcal{I}_{\mathcal{F}} \to \tilde{p}$ and \tilde{p} is an intuitionistic limit point of $\mathcal{I}_{\mathcal{F}}$. Therefore $\mathcal{I}_{\mathcal{F}} \to \tilde{p} \Leftrightarrow \mathcal{I}_{\mathcal{F}}$ is eventually in every τ -intuitionistic neighbourhood of \tilde{p} . The set of all intuitionistic limit points of an intuitionistic filter $\mathcal{I}_{\mathcal{F}}$ denoted by $\text{Lim}(\mathcal{I}_{\mathcal{F}})$.

Example 4.10. Let $X = \{a, b, c\}$ and let $\tau = \{ \prec X, \phi, X \succ, \prec X, \{a\}, \phi \succ, \prec X, X, \phi \succ, \prec X, \{a, b\}, \phi \succ \}$ be the given intuitionistic topology on X.

$$\mathcal{I}_{\mathcal{F}1} = \{ \prec X, \{a\}, \phi \succ, \prec X, \{a, b\}, \phi \succ, \prec X, \{a, c\}, \phi \succ, \prec X, X, \phi \succ \},$$
$$\mathcal{I}_{\mathcal{F}2} = \{ \prec X, \{b\}, \phi \succ, \prec X, \{a, b\}, \phi \succ, \prec X, \{b, c\}, \phi \succ, \prec X, X, \phi \succ \}$$

and

$$\mathcal{I}_{\mathcal{F}3} = \{ \prec X, \{c\}, \phi \succ, \prec X, \{a, c\}, \phi \succ, \prec X, \{b, c\}, \phi \succ, \prec X, X, \phi \succ \}$$

are any three intuitionistic filters on X.

Now take $\tilde{a} = \prec X$, $\{a\}$, $\{b, c\} \succ$ and $\tilde{b} = \prec X$, $\{b\}$, $\{a, c\} \succ$ and $\tilde{c} = \prec X$, $\{c\}$, $\{a, b\} \succ$ be the three intuitionistic points on X. Then

$$\mathcal{N}_{\tilde{a}\tau} = \{ \prec X, \{a\}, \phi \succ, \prec X, \{a, b\}, \phi \succ, \prec X, \{a, c\}, \phi \succ, \prec X, X, \phi \succ \}$$

and

$$\mathcal{N}_{\tilde{b}\tau} = \{ \prec X, \{a, b\}, \phi \succ, \prec X, X, \phi \succ \}$$

and

$$\mathcal{N}_{\tilde{c}\tau} = \{ \prec X, X, \phi \succ \}$$

are the neighbourhood intuitionistic filters. $\mathcal{I}_{\mathcal{F}_1}$ is eventually in every τ -intuitionistic neighbourhood of intuitionistic point \tilde{a} . That is every τ -intuitionistic neighbourhood of intuitionistic point \tilde{a} is contained in $\mathcal{I}_{\mathcal{F}_1}$ so that $\mathcal{I}_{\mathcal{F}_1} \to \tilde{a}$. Similarly $\mathcal{I}_{\mathcal{F}_1} \to \tilde{b}$, $\mathcal{I}_{\mathcal{F}_1} \to$ \tilde{c} as $\mathcal{I}_{\mathcal{F}_1}$ contains every τ -intuitionistic neighbourhood of \tilde{b} and \tilde{c} . Hence $\text{Lim}(\mathcal{I}_{\mathcal{F}_1}) =$ $\{\tilde{a}, \tilde{b}, \tilde{c}\}$. Similarly $\text{Lim}(\mathcal{I}_{\mathcal{F}_2}) = \{\tilde{b}, \tilde{c}\}$ and $\text{Lim}(\mathcal{I}_{\mathcal{F}_3}) = \tilde{c}$.

5. Properties of convergence of intuitionistic filter

In this section, we study some basic properties of the convergence of intuitionistic filter space.

Theorem 5.1. Let X be a given nonempty set and τ be an intuitionistic topological space on X Also let $\mathcal{N}_{\tilde{p}\tau}$ be the τ -intuitionistic neighbourhood of the intuitionistic point \tilde{p} . Then

- (a) Every τ -nbd intuitionistic filter $\mathcal{N}_{\tilde{p}\tau}$ converges to a unique limit.
- (b) If τ is an indiscrete intuitionistic topological space, then every intuitionistic filter on X,converges to every intuitionistic point of X.

- (c) If $\mathcal{I}_{\mathcal{F}} \to \tilde{p}$, then $\mathcal{I}_{\mathcal{F}}^* \to \tilde{p}$ where $\mathcal{I}_{\mathcal{F}}^*$ is finer than $\mathcal{I}_{\mathcal{F}}$.
- (d) If $\mathcal{I}_{\mathcal{F}} \to \tilde{p}$ w.r.t τ , then $\mathcal{I}_{\mathcal{F}} \to \tilde{p}$ w.r.t τ^* where τ^* is an intuitionistic topology on X, which is coarser than τ .

Proof.

- (a) Let N_{p̃τ} be a collection of all τ-intuitionistic neighbourhoods of p̃ in an intuitionistic topological space (X, τ). By Theorem 4.6, N_{p̃τ} is an intuitionistic filter on X and N_{p̃τ} is eventually in every τ-intuitionistic neighbourhood of intuitionistic point p̃ or every τ-intuitionistic neighbourhood of p̃ is contained in N_{p̃τ} and hence N_{p̃τ} → p̃. Further this p̃ is unique because if q̃ is any other intuitionistic point distinct from intuitionistic point p̃, then ≺ X, {q}, φ ≻ is a intuitionistic neighbourhood of q̃ but it is not belong to N_{p̃τ}.
- (b) Let I_F be a intuitionistic filter on X and p̃ = ≺ X, {p}, {p}^c ≻ be any arbitrary intuitionistic point of X. Then only τ-neighbourhood intuitionistic filter of p̃ is {≺ X, X, φ ≻} in an indiscrete intuitionistic topological space and ≺ X, X, φ ≻ ∈ I_F so that I_F → p̃. Since p̃ was chosen arbitrarily, every intuitionistic filter on X converges to every intuitionistic point of X.
- (c) $\mathcal{I}_{\mathcal{F}} \to \tilde{p}$ if and only if every τ -intuitionistic neighbourhood of \tilde{p} is contained in $\mathcal{I}_{\mathcal{F}}$ As $\mathcal{I}_{\mathcal{F}}^*$ is finer than $\mathcal{I}_{\mathcal{F}}, \mathcal{I}_{\mathcal{F}}^*$ is eventually in every τ -intuitionistic neighbourhood of \tilde{p} . Hence $\mathcal{I}_{\mathcal{F}}^* \to \tilde{p}$.
- (d) $\mathcal{I}_{\mathcal{F}} \to \tilde{p}$ w.r.t τ if and only if every τ -intuitionistic neighbourhood of \tilde{p} is contained in $\mathcal{I}_{\mathcal{F}}$. As τ^* is coarser than τ . $\mathcal{I}_{\mathcal{F}}$ is eventually in every τ^* -intuitionistic neighbourhood of \tilde{p} . Then $\mathcal{I}_{\mathcal{F}} \to \tilde{p}$ w.r.t τ^* .

Theorem 5.2. An intuitionistic filter $\mathcal{I}_{\mathcal{F}}$ on an intuitionistic topological space (X, τ) converges to an intuitionistic point $\tilde{p} \in X$ if and only if every intuitionistic ultra filter on X containing $\mathcal{I}_{\mathcal{F}}$ converges to \tilde{p} .

Proof. Let $\mathcal{I}_{\mathcal{F}} \to \tilde{p}$. Then $\mathcal{I}_{\mathcal{F}*}$ be an intuitionistic ultra filter containing $\mathcal{I}_{\mathcal{F}}$. That is $\mathcal{I}_{\mathcal{F}*}$ is finer than $\mathcal{I}_{\mathcal{F}}$. So that $\mathcal{I}_{\mathcal{F}*} \to \tilde{p}$ by Theorem 5.1.

Conversely, let every intuitionistic ultra filter on X containing $\mathcal{I}_{\mathcal{F}}$ converges to $\tilde{p} \in X$. Therefore every τ intuitionistic neighbourhood of \tilde{p} is contained in every intuitionistic ultra filter on X, which contains $\mathcal{I}_{\mathcal{F}}$. By Theorem 3.4, every τ intuitionistic neighbourhood of \tilde{p} is contained in the intersection of all the intuitionistic ultra filter on X which contains $\mathcal{I}_{\mathcal{F}}$. Thus every τ intuitionistic neighbourhood of \tilde{p} is contained in $\mathcal{I}_{\mathcal{F}}$. Hence $\mathcal{I}_{\mathcal{F}} \to \tilde{p}$.

Theorem 5.3. In an intuitionistic topological space (X, τ) a nonempty intuitionistic subset $G = \prec X$, G^1 , $G^2 \succ$ of X is τ -intuitionistic open if and only if G is contained in every intuitionistic filter which converges to an intuitionistic point of G.

Proof. Let G be a τ -intuitionistic open set and $\mathcal{I}_{\mathcal{F}}$ be an arbitrary intuitionistic filter on X, which converges to $\tilde{p} = \prec X$, $\{p\}$, $\{p\}^c \succ \in G$. Let $\mathcal{I}_{\mathcal{F}} \rightarrow \tilde{p} \in G$. Then every τ -intuitionistic neighbourhood of \tilde{p} is contained in $\mathcal{I}_{\mathcal{F}}$. Ultimately τ -intuitionistic open set G is contained in $\mathcal{I}_{\mathcal{F}}$. Since $\mathcal{I}_{\mathcal{F}}$ is an arbitrary intuitionistic filter which converges to $\tilde{p} \in G$, and G is contained in every intuitionistic filter $\mathcal{I}_{\mathcal{F}}$ on X which converges to an intuitionistic point of G.

Conversely, let G be contained in every intuitionistic filter which converges to an intuitionistic point of G. Choose $\tilde{p} = \prec X$, $\{p\}, \{p\}^c \succ$ to be any arbitrary intuitionistic point of G. So that $\mathcal{N}_{\tilde{p}\tau}$ is the neighbourhood intuitionistic filter of \tilde{p} which converges to \tilde{p} and by the given condition $G \subset \mathcal{N}_{\tilde{p}\tau}$. In other words G is an intuitionistic neighbourhood of \tilde{p} and \tilde{p} is an arbitrary intuitionistic point of G, we have G is a τ intuitionistic neighbourhood of each of its intuitionistic points. Hence G is τ -intuitionistic open.

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, VII ITKR's Session, Sofia, 1983, Bulgarian.
- [2] D. Coker, An introduction to intuitionistic topological spaces, *Busefal*, 81, 51–56 (2000).
- [3] E. Coskun, and D. Coker, On neighborhood Structures in Intuitionistic Topological Spaces, *Mathematical Balkanica*, 12(3-4), (1998) 289–293.
- [4] D. Coker, A Note On Intuitionistic Sets and Intuitionistic points, *Tr. J. Math*, 20(1996), 343–351.
- [5] J.L. Kelley, General Topology, Princeton: D. Van Nostrand, 1955.
- [6] J.I. Nagata, Modern General Topology, Amsterdam: North-Holland, 1968.
- [7] A.J. Sieradaki, An introduction to Topology and Homotopy, Boston: PWS-ent, 1992.
- [8] L.A. Zadeh, Fuzzy sets, Information and control, 8(1965), 338–353.
- [9] K. Suguna Devi, N. Durga Devi and R. Raja Rajeswari, A Study On Intuitionistic Filters, *Malaya J. Mat.*, 4(2), (2016), 271–276.