Some More Results on Super Heronian Mean Labeling

S.S. Sandhya Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai-629003,Tamilnadu, India. E. Ebin Raja Merly Department of Mathematics, Nesamony Memorial Christian College, Marthandam-629165, Tamilnadu, India

G.D. Jemi

Department of Mathematics, Narayanaguru College of Engineering, Manjalumoodu-629 151,Tamilnadu, India.

Abstract

Here we look into some more results on Super Heronian Mean Labeling for some standard graphs. In this paper we prove that $P_n \odot K_{1,2}$, $P_n \odot K_{1,3}$, $P_n \odot K_3$, $(P_n \odot K_1) \odot K_{1,2}$, $(P_n \odot K_1) \odot K_{1,3}$ are Super Heronian Mean graphs.

Keywords: Graph, Super Heronian mean graph, $P_n \odot K_{1,2}$, $P_n \odot K_{1,3}$. $P_n \odot K_3$, ($P_n \odot K_1$) $\odot K_{1,2}$, ($P_n \odot K_1$) $\odot K_{1,3}$.

1. INTRODUCTION

We start with simple, finite and undirected graph and have p vertices and q edges. For a detailed survey of graph labeling, we refer to J.A Gallian [1]. For standard terminology and notation we follow Harary [2]. The concept of Super Heronian Mean Labeling was introduced by S.S.Sandhya, E.Ebin Raja Merly and G.D.Jemi in [7]. In this paper, we discuss some more results on Super Heronian Mean Labeling for some special graphs.

Definition: 1.1

Let $f:V(G) \rightarrow \{1,2,\dots,p+q\}$ be an injective function. For a vertex labeling "f" the induced edge labeling $f^*(e=uv)$ is defined by, $f^*(e) = \left\lfloor \frac{f(u) + \sqrt{f(u)f(v)} + f(v)}{3} \right\rfloor$ [OR] $\left\lfloor \frac{f(u) + \sqrt{f(u)f(v)} + f(v)}{3} \right\rfloor$ Then "f" is called a **Super Heronian Mean Labeling** if

 ${f(V(G)} U {f(e): e \in E(G)=\{1,2, ...,p+q\}}$. A graph which admits Super Heronian Mean Labeling is called **Super Heronian Mean Graph.**

Theorem :1.2 Any Path P_n is a Super Heronian Mean Graph.

Theorem :1.3 Any Cycle C_n is a Super Heronian Mean Graph.

Theorem :1.4 Any Comb $(P_n \odot K_1)$ is a Super Heronian Mean Graph.

2. MAIN RESULTS

Theorem: 2.1

Let G be a graph obtained by joining a pendant vertex with a vertex of degree two on both sides of a **Comb graph**. Then G is a Super Heronian mean graph.

Proof:

Comb $(P_n \odot K_1)$ is a graph obtained from a path $P_n = v_1 v_2 \dots v_n$ by joining a vertex v_i to u_i , $1 \le i \le n$.Let G be a graph obtained by joining pendant vertices w and z respectively.

Define a function f: V(G) \rightarrow {1,2, . . . ,p+q} by,

$$f(w)=1,$$

 $f(v_1)=3,$
 $f(v_i)=4i+1; 2 \le i \le n$
 $f(z)=4n+3$
 $f(u_1)=5,$
 $f(u_i)=4i-1; 2 \le i \le n$

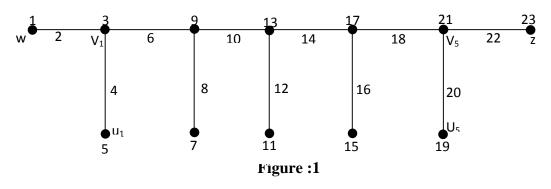
Edges are labeled with,

```
\begin{array}{l} f(wv_1)=2\\ f(v_iv_{i+1})=4i+2 \ ; \ 1\leq i\leq n-1\\ f(v_nz)=4n+2\\ f(v_iu_i)=4i \ ; \ 1\leq i\leq n\\ \therefore f(V(G))U\{f(e):e\in E(G)\}=\{1,2,\ldots,p+q\} \end{array}
```

Thus f provides Super Heronian mean labeling of G.

Hence G is a Super Heronian mean Graph.

200



Example:.2.2 A Super Heronian mean labeling of G when n=5 is given below

Theorem: 2.3

Let G be a graph obtained by attaching each vertex of P_n to the central vertex of $K_{1,2}$. Then G is a Super Heronian mean graph.

Proof:

Let P_n be the path $u_1u_2 \ldots u_n$ and v_i, w_i be the vertices of $K_{1,2}$ which are attached to vertex u_i of P_n . The graph contain 3n vertices and 3n-1 edges.

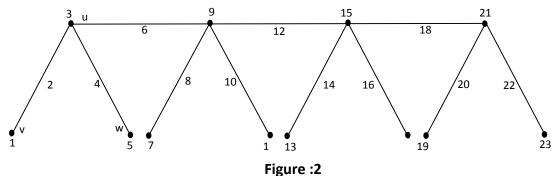
Define a function f: V(G) \rightarrow {1,2,...,p+q} by,

Edges are labeled with,

 $\begin{array}{l} f(u_{i}u_{i+1})=6i \ ; \ 1 \leq i \leq n-1 \\ f(u_{i}v_{i})=6i-4 \ ; \ 1 \leq i \leq n \\ f(u_{i}w_{i})=6i-2 \ ; \ 1 \leq i \leq n \end{array}$

This gives a Super Heronian mean labeling of G.

Example:2.4 A Super Heronian mean labeling of $P_4 \odot K_{1,2}$ is given below.



Theorem: 2.5

Let G be a graph obtained by attaching each vertex of P_n to the central vertex of $K_{1,3}$. Then G is a Super Heronian mean graph.

Proof:

Let P_n be the path $u_1,u_2\ldots u_n$ and v_i,w_i,z_i be the vertices of $K_{1,2}$ which are attached to the vertex u_i of P_n .

Define a function f: $V(G) \rightarrow \{1, 2, \dots, p+q\}$ by,

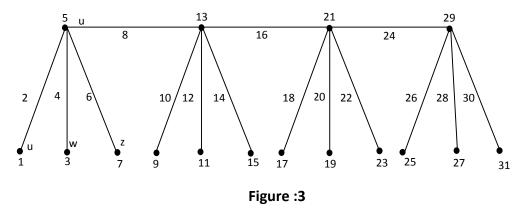
 $\begin{array}{l} f(u_i) = 8i - 3 \ ; \ 1 \leq i \leq n \\ f(v_i) = 8i - 7 \ ; \ 1 \leq i \leq n \\ f(w_i) = 8i - 5 \ ; \ 1 \leq i \leq n \\ f(z_i) = 8i - 1 \ ; \ 1 \leq i \leq n \end{array}$

Edges are labeled with,

 $\begin{array}{l} f(u_{i}u_{i+1}) = 8 \ i \ ; \ 1 \leq i \leq n-1 \\ f(u_{i}v_{i}) = 8i-6 \ ; \ 1 \leq i \leq n \\ f(u_{i}w_{i}) = 8i-4 \ ; \ 1 \leq i \leq n \\ f(u_{i}z_{i}) = 8i-2 \ ; \ 1 \leq i \leq n \end{array}$

This gives a Super Heronian mean labeling of G.

Example:2.6 A Super Heronian mean labeling of $P_4 \odot K_{1,3}$ is given below.



Theorem: 2.7

Let $G=P_n \odot C_3$ be a graph obtained by attaching C_3 to each vertex of a path P_n . Then G is a Super Heronian mean graphs.

202

Proof:

Consider a graph G is obtained by attaching C_3 to each vertex of a Path P_n .Let P_n be a path $u_1, u_2 \ldots u_n$.Let $u_i, v_i, w_i, 1 \le i \le n$ be the vertices of C_3 .

Define a function f: V(G) \rightarrow {1,2, ...,p+q} by,

```
\begin{array}{l} f(u_i) = 7i - 3 \ ; \ 1 \leq i \leq n \\ f(v_i) = 7i - 6 \ ; \ 1 \leq i \leq n \\ f(w_i) = 7i - 1 \ ; \ 1 \leq i \leq n \end{array}
```

Edges are labeled with,

 $f(u_iu_{i+1})=7i$; $1 \le i \le n-1$

 $f(u_iv_i)=7i-5$; $1 \leq i \leq n$

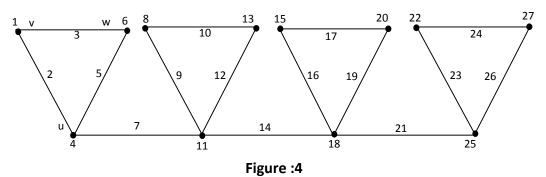
 $f(v_iw_i)=7i-4$; $1 \le i \le n$

 $f(u_iw_i)=7i-2$; $1 \le i \le n$

 $f(V(G))U{f(e)=e \in E(G)}={1,2,...,p+q}$

Hence G is a Super Heronian mean graph.

Example:2.8 A Super Heronian mean labeling of $P_4 \odot C_3$ is displayed below.



Theorem: 2.9

A graph obtained by attaching $K_{1,2}$ at each pendant vertex of a Comb is a Super Heronian mean graph.

Proof:

Let G_1 be a comb and G be the graph obtained by attaching $K_{1,2}$ at each pendant vertex of G_1 .Let its vertices be u_i , v_i , w_i , x_i , $1 \le i \le n$.

Define a function f: V(G) \rightarrow {1,2,...,p+q} by,

 $f(u_i)=8i-3$; $1 \le i \le n$

```
\begin{array}{l} f(v_i) = 8i - 1; \ 1 \leq i \leq n \\ f(w_1) = 1 \\ f(w_i) = 8i - 8 \ ; \ 2 \leq i \leq n \end{array}
```

 $f(x_i)\!\!=\!\!8i\text{-}6\text{ ; }1\!\leq\!\!i\!\leq\!\!n$

Edges are labeled with,

 $f(u_iu_{i+1})=8i+1$; $1 \le i \le n-1$ $f(u_iv_i)=8i-2$; $1 \le i \le n$ $f(v_iw_i)=8i-5$; $1 \le i \le n$ $f(v_ix_i)=8i-4$; $1 \le i \le n$ Thus both vertices and equivalent

Thus both vertices and edges together get distinct labels from $\{1, 2, ..., p+q\}$. Hence G is a Super Heronian mean graphs.

Example:2.10 A Super Heronian mean labelling of $G=(P_5 \odot K_{1,2})$ is given below.

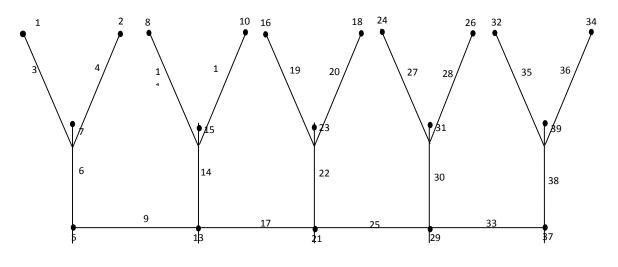


Figure :5

Theorem: 2.11

A graph obtained by attaching a triangle at each pendant vertex of a Comb is a Super Heronian mean graph.

Proof:

Let G_1 be a comb and G be the graph obtained by attaching a triangle at each pendant vertex of G_1 .Let its vertices be u_i , v_i , w_i , x_i , $1 \le i \le n$.

204

Define a function f: V(G) \rightarrow {1,2, . . . , p+q} by,

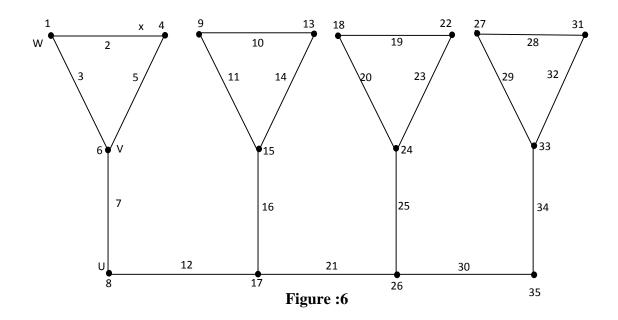
 $\begin{array}{l} f(u_i) = 9i - 1 \ ; \ 1 \leq i \leq n \\ f(v_i) = 9i - 3 \ ; \ 1 \leq i \leq n \\ f(w_1) = 1 \\ f(w_i) = 9i - 9 \ ; \ 2 \leq i \leq n \\ f(x_i) = 9i - 5 \ ; \ 1 \leq i \leq n \end{array}$

Edges are labeled with,

 $\begin{array}{l} f(u_{i}u_{i+1}) = 9i + 3 \ ; \ 1 \leq i \leq n - 1 \\ f(u_{i}v_{i}) = 9i - 2 \ ; \ 1 \leq i \leq n \\ f(v_{1}w_{1}) = 3, \ f(v_{i}w_{i}) = 9i - 7 \ ; \ 2 \leq i \leq n \\ f(v_{i}x_{i}) = 9i - 4 \ ; \ 1 \leq i \leq n \\ f(w_{1}x_{1}) = 2, \ f(w_{i}x_{i}) = 9i - 8 \ ; \ 2 \leq i \leq n \end{array}$

Thus f provides a Super Heronian mean graph.

Example:2.1 A Super Heronian mean labeling of $G=(P_4 \odot K_1) \odot K_{1,2}$ is given below,



REFERENCES

- [1] J.A.Gallian, A Dynamic Survey of Graph labelling, The Electronic journal of Combinatorics(2013).
- [2] F.Harary(1988), Graph Theory, Narosa Publishing House Reading, New Delhi.
- [3] S.Somasundaram and R.Ponraj, "Mean Labeling of Graphs", National Academy of Science Letters vol.26, p.210-213.
- [4] S.Somasundaram, R.Ponraj and S.S.Sandhya, "Harmonic Mean Labeling" of Graphs communicated to Journal of Combinatorial Mathematics and Combinatorial Computing.
- [5] C.Jeyasekaran, S.S.Sandhya and C. David Raj, "Some Results on Super Harmonic Mean Graphs",International Journal of Mathematics trend and Tecnology,vol.6(3)(2014),215-224.
- [6] S.Somasundaram, R.Ponraj and P.Vidhyarani, "Geometric Mean Labeling of Graphs" Bulletin of Pure and Applied Sciences 30E(z)(2011)p.153-160.
- [7] S.S.Sandhya, E.Ebin Raja Merly and G.D.Jemi, "Super Heronian Mean Labeling of Graphs" communicated to International Journal of Mathematical Forum.