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Abstract 

Here we look into some more results on Super Heronian Mean Labeling for 

some standard graphs.In this paper we  prove that Pn⨀K1,2 , Pn⨀K1,3 , Pn⨀K3, 

(Pn⨀K1) ⨀K1,2,  (Pn⨀K1 )⨀K1,3 are Super Heronian Mean graphs. 

Keywords: Graph,  Super  Heronian mean graph, Pn⨀K1,2 , Pn⨀K1,3  . Pn⨀K3,( 

Pn⨀K1) ⨀K1,2, (Pn⨀K1 )⨀K1,3. 

 

1. INTRODUCTION  

We start with simple,finite and undirected graph and have p vertices and q edges.For  a 

detailed survey of graph labeling, we refer to J.A Gallian [1]. For standard terminology 

and notation we follow Harary [2].The concept of  Super Heronian Mean Labeling was 

introduced by S.S.Sandhya,E.Ebin Raja Merly and G.D.Jemi in [7] . In this paper, we 

discuss some more results on  Super Heronian  Mean Labeling for some special graphs. 

 Definition: 1.1  

Let f :V(G)→{1,2,------,p+q} be an injective function. For a vertex labeling “f” the 

induced edge labeling f*(e=uv) is defined by, f*(e)= ⌊
𝑓(𝑢)+  √𝑓(𝑢)𝑓(𝑣)   +𝑓(𝑣)

3
⌋  [OR]  

⌈
𝑓(𝑢)+ √𝑓(𝑢)𝑓(𝑣)  +𝑓(𝑣) 

3
⌉    Then “f” is called a Super Heronian Mean Labeling if 
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{f(V(G)} U {f(e): e ϵ E(G)={1,2, ...,p+q}}. A graph which admits Super Heronian 

Mean Labeling is called Super Heronian Mean Graph. 

Theorem :1.2   Any Path Pn is a Super Heronian Mean Graph.  

Theorem :1.3  Any Cycle Cn is a Super Heronian Mean Graph. 

Theorem :1.4  Any Comb (Pn⨀K1 )  is a Super Heronian Mean Graph. 

 

2. MAIN RESULTS 

Theorem: 2.1 

Let G be a graph obtained by joining a pendant vertex with a vertex of degree two on 

both sides of a Comb graph. Then G is a Super Heronian mean graph. 

Proof: 

Comb (Pn⨀K1) is a graph obtained from a path Pn=v1v2 . . . vn by joining a vertex vi to 

ui, 1≤i≤n.Let G be a graph obtained by joining pendant vertices w and z  respectively. 

Define a function f: V(G)→{1,2, . . . ,p+q} by, 

 f(w)=1,  

            f(v1)=3, 

            f(vi)=4i+1 ; 2≤i≤n 

 f(z)=4n+3 

 f(u1)=5, 

             f(ui)=4i-1 ; 2≤i≤n 

Edges are labeled with,  

 f(wv1)=2 

 f(vivi+1)=4i+2 ; 1≤i≤n-1 

 f(vnz)=4n+2 

 f(viui)=4i  ; 1≤i≤n 

       :.f(V(G))U{f(e):e ϵ E(G)}={1,2, . . . ,p+q} 

Thus f  provides Super Heronian mean labeling of G. 

Hence G is a Super Heronian mean Graph. 
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Example:.2.2  A Super Heronian mean labeling  of G when n=5 is given below 

                                       

                                                  

 

 

 
 

Figure :1 

Theorem: 2.3 

Let G be a graph obtained by attaching each vertex of Pn to the central vertex of K1,2. 

Then G is a Super Heronian mean graph. 

Proof: 

Let Pn be the path u1u2 . . . un and vi,wi be the vertices of K1,2 which are attached to 

vertex ui of Pn.The graph contain 3n vertices and 3n-1 edges. 

Define a function  f: V(G)→{1,2, . . . ,p+q} by, 

 f(ui)=6i-3 ; 1≤i≤n 

 f(vi)=6i-5 ; 1≤i≤n 

 f(wi)=6i-1 ; 1≤i≤n 

Edges are labeled with, 

 f(uiui+1)=6i ; 1≤i≤n-1 

 f(uivi)=6i-4 ; 1≤i≤n 

 f(uiwi)=6i-2 ; 1≤i≤n 

This gives a Super Heronian mean labeling of G.   

Example:2.4   A Super Heronian mean labeling of P4⨀K1,2 is given below. 

 

 

 

 

 

Figure :2 
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Theorem:  2.5  

Let G be a graph obtained by attaching each vertex of Pn to the central vertex of K1,3 . 

Then G is a Super Heronian mean graph. 

Proof: 

Let Pn be the path u1,u2 . . . un and vi,wi,zi be the vertices of K1,2 which are attached to 

the vertex ui of Pn . 

Define a function f: V(G) → {1,2, . . . , p+q} by, 

 f(ui)=8i-3 ; 1≤i≤n 

 f(vi)=8i-7 ; 1≤i≤n 

 f(wi)=8i-5 ; 1≤i≤n 

 f(zi)=8i-1 ; 1≤i≤n 

Edges are labeled with,  

 f(uiui+1)=8 i ; 1≤i≤n-1 

 f(uivi)=8i-6 ; 1≤i≤n 

 f(uiwi)=8i-4 ; 1≤i≤n 

 f(uizi)=8i-2 ; 1≤i≤n 

 This gives a Super Heronian mean labeling of G. 

 

Example:2.6  A Super Heronian mean labeling of P4⨀K1,3 is given below. 

 

 

 

 

 

 

Figure :3 

Theorem: 2.7 

Let G=Pn ⨀ C3 be a graph obtained by attaching C3 to each vertex of a path Pn. Then G 

is a Super Heronian mean graphs. 
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Proof: 

Consider a graph G is obtained by attaching C3 to each vertex of a Path Pn.Let Pn be a 

path u1,u2 . . . un.Let ui, vi, wi, 1≤i≤n be the vertices of C3. 

Define a function f: V(G)→{1,2, . . . ,p+q} by, 

 f(ui)=7i-3 ; 1≤i≤n 

 f(vi)=7i-6 ; 1≤i≤n 

 f(wi)=7i-1 ; 1≤i≤n 

Edges are labeled with, 

 f(uiui+1)=7i ; 1≤i≤n-1 

f(uivi)=7i-5 ; 1≤i≤n 

f(viwi)=7i-4 ; 1≤i≤n 

f(uiwi)=7i-2 ; 1≤i≤n 

     f (V(G))U{f(e)=e ϵ E(G)}={1,2, . . . , p+q}   

Hence G is a Super Heronian mean graph. 

Example:2.8  A Super Heronian mean labeling  of  P4  ⨀  C3 is displayed  below. 

 

 

 

 

 

Figure :4 

Theorem: 2.9 

 A graph obtained by attaching K1,2 at each pendant vertex of  a Comb is a Super 

Heronian mean graph. 

Proof: 

 Let G1be a comb and G be the graph obtained by attaching K1,2 at each pendant 

vertex of G1.Let its vertices be ui, vi, wi, xi, 1≤i≤n. 

 Define a function  f: V(G)→{1,2, . . . ,p+q} by, 

 f(ui)=8i-3 ; 1≤i≤n 
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 f(vi)=8i-1; 1≤i≤n 

 f(w1)=1 

 f(wi)=8i-8 ; 2≤i≤n 

 f(xi)=8i-6 ; 1≤i≤n 

Edges are labeled with, 

 f(uiui+1)=8i+1 ; 1≤i≤n-1 

f(uivi)=8i-2 ; 1≤i≤n 

f(viwi)=8i-5 ; 1≤i≤n 

f(vixi)=8i-4 ; 1≤i≤n 

Thus both vertices and edges together get distinct labels from{1,2, . . . , p+q}. 

Hence G is a Super Heronian mean graphs. 

Example:2.10  A Super Heronian mean labelling of G=(P5 ⨀ K1,2) is given below. 

 

                                                         

 

 

 

 

 

 

 

Figure :5 

Theorem: 2.11  

A graph obtained by attaching a triangle at each pendant vertex of a Comb is a Super 

Heronian mean graph. 

 

Proof: 

Let G1 be a comb and G be the graph obtained by attaching a triangle  at each pendant 

vertex of G1.Let its vertices be ui, vi, wi, xi, 1≤i≤n. 
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Define a function  f: V(G)→{1,2, . . . ,p+q} by, 

 f(ui)=9i-1 ; 1≤i≤n 

 f(vi)=9i-3 ; 1≤i≤n 

 f(w1)=1 

 f(wi)=9i-9 ; 2≤i≤n 

 f(xi)=9i-5 ; 1≤i≤n 

Edges are labeled with, 

 f(uiui+1)=9i+3 ; 1≤i≤n-1 

f(uivi)=9i-2 ; 1≤i≤n 

f(v1w1)=3, f(viwi)=9i-7 ; 2≤i≤n 

f(vixi)=9i-4 ; 1≤i≤n 

f(w1x1)=2, f(wixi)=9i-8 ; 2≤i≤n 

Thus f provides a Super Heronian mean graph. 

Example:2.1  A Super Heronian mean labeling of G=(P4 ⨀ K1) ⨀ K1,2 is given below, 

 

 

 

 

 

 

 

 

 

 

Figure :6 
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