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Abstract

In this paper we proved the some fixed point theorems in Parametric metric spaces.
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1. Introduction and preliminaries

Fixed point theorems are very important tool for proving the existence and eventually the
uniqueness of the solutions to various mathematical models (integral and partial differ-
ential equations, variational inequalities). In last few years different types of generalized
metric spaces have been developed by different authors in different approach. Some
generalized metric spaces are D-metric space, Cone metric space [4] etc. The notion of
parametric metric spaces being a natural generalization of metric spaces was recently
introduced and studied by Hussain et al. [2]. In this paper, we present some fixed point
theorems under various expansive conditions in parametric metric spaces. These results
improve and generalize some important known results in [6,7,8].

2. Preliminaries

Definition 2.1. Let X be a nonempty set and a function

ρ : X × X × (0, +∞) → [0, +∞)

is said to be a parametric metric on X if,

(1) ρ(x, y, t) = 0 for all t > 0 if and only if x = y,
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(2) ρ(x, y, t) = ρ(y, x, t) for all t > 0,

(3) ρ(x, y, t) ≤ ρ(x, z, t) + ρ(z, y, t) for all x, y, z ∈ X and all t > 0.

and the pair (X, ρ) is called parametric metric space.

Definition 2.2. Let {xn}∞n=1 be a sequence in a parametric metric space (X, ρ).

(1) {xn}∞n=1 is said to be convergent to x ∈ X, if

lim
n→∞ ρ(xn, x, t) = 0.

written as lim
n→∞ xn = x, for all t > 0,

(2) {xn}∞n=1 is said to be a Cauchy sequence in X if for all t > 0, if

lim
n,m→∞ ρ(xn, xm, t) = 0.

(3) (X, ρ) is said to be complete if every Cauchy sequence is a convergent sequence.

Definition 2.3. Let (X, ρ) be a parametric metric space and a function T : X → X

is continuous at x ∈ X, if for any sequence {xn}∞n=1 in X such that lim
n→∞ xn = x, then

lim
n→∞ T xn = T x.

Example 2.4. Let X = {f/f : (0, +∞) → R}. And define the function ρ : X × X ×
(0, +∞) → [0, +∞) by ρ(f, g, t) = |f (t) − g(t)|, ∀f, g ∈ X and all t > 0. Then ρ is
a parametric metric on X and the pair (X, ρ) is a parametric metric space.

Lemma 2.5. Let {xn}∞n=1 be a sequence in a parametric metric space (X, ρ) such that

ρ(xn, xn+1, t) � λρ(xn−1, xn, t)

where λ ∈ [0, 1) and n = 1, 2, . . . Then {xn}∞n=1 is a Cauchy sequence in (X, ρ).

Lemma 2.6. Let (X, ρ, s) be a parametric metric space with the coefficient s = 1. Let
{xn}∞n=1 be a sequence of points of X such that

ρ(xn, xn+1, t) � λρ(xn−1, xn, t)

where λ ∈ [0,
1

s
) and n = 1, 2, . . . Then {xn}∞n=1 is a Cauchy sequence in (X, ρ, s).
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3. Main results

Theorem 3.1. Let (X, ρ) be a complete parametric metric space and T a continuous
mapping satisfying the following condition:

ρ(T x, T y, t) ≤ α max[ρ(x, y, t), ρ(x, T (x), t), ρ(y, T (y), t),

ρ(x, T (y), t), ρ(T (x), y, t)]
for all x, y ∈ X, x �= y, and for all t > 0, where α ∈ [0, 1). Then T has a unique fixed
point in X.

Proof. Choose x0 ∈ X be arbitrary, to define the iterative sequence {xn}n∈N as follows,
T xn = xn+1 for n = 1, 2, 3, . . . Taking x = xn and y = xn+1 in (1), we obtain

ρ(T xn, T xn+1, t) ≤ α max[ρ(xn, xn+1, t), ρ(xn, T xn, t), ρ(xn+1, T xn+1, t),

ρ(xn, T xn+1, t), ρ(T xn, xn+1, t)].
ρ(xn+1, xn+2, t) ≤ α max[ρ(xn, xn+1, t), ρ(xn, xn+1, t), ρ(xn+1, xn+2, t),

ρ(xn, xn+2, t), ρ(xn+1, xn+1, t)].
ρ(xn+1, xn+2, t) ≤ α max[ρ(xn, xn+1, t), ρ(xn, xn+2, t)].

Case (i): If ρ(xn+1, xn+2, t) ≤ αρ(xn, xn+1, t). Hence by induction, we obtain

ρ(xn+1, xn+2, t) ≤ αn+1ρ(x0, x1, t), ∀t > 0 and α < 1.

By Lemma 2.5, {xn}n∈N is a Cauchy sequence in X. But X is a complete parametric
metric space; hence,{xn}n∈N is converges. Call the limit x∗ ∈ X. Then, xn → x∗ as
n → +∞. By continuity of T we have,

T x∗ = T ( lim
n→∞ xn) = lim

n→∞ T xn = lim
n→∞ xn+1 = x∗.

That is, T x∗ = x∗; thus, T has a fixed point in X.

Case (ii): If ρ(xn+1, xn+2, t) ≤ αρ(xn, xn+2, t).

ρ(xn+1, xn+2, t) ≤ α (ρ(xn, xn+1, t) + ρ(xn+1, xn+2, t)) .

≤ α

1 − α
ρ(xn, xn+1, t).

≤ hρ(xn, xn+1, t) where h = α

1 − α
< 1

Hence by induction, we obtain

ρ(xn+1, xn+2, t) ≤ hn+1ρ(x0, x1, t)
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By Lemma 2.5, {xn}n∈N is a Cauchy sequence in X. But X is a complete parametric
metric space; hence, {xn}n∈N is converges. Call the limit x∗ ∈ X. Then, xn → x∗ as
n → +∞. By continuity of T we have,

T x∗ = T ( lim
n→∞ xn) = lim

n→∞ T xn = lim
n→∞ xn−1 = x∗.

That is, T x∗ = x∗; thus, T has a fixed point in X.

Uniqueness:
Let y∗ be another fixed point of T in X; then Ty∗ = y∗ and T x∗ = x∗. Now,

ρ(T x∗, T y∗, t) ≤ α max[ρ(x∗, y∗, t), ρ(x∗, T x∗, t), ρ(y∗, T y∗, t),
ρ(x∗, T y∗, t), ρ(T x∗, y∗, t)].

This implies that

ρ(x∗, y∗, t) ≤ αρ(x∗, y∗, t)

This is true only when ρ(x∗, y∗, t) = 0. So x∗ = y∗. Hence T has a unique fixed point
in X. �

Corollary 3.2. Let (X, ρ) be a complete parametric metric space and T a continuous
mapping satisfying the following condition:

ρ(T x, T y, t) ≤ α max[ρ(x, y, t), ρ(x, T (x), t), ρ(y, T (y), t)]

for all x, y ∈ X, x �= y, and t > 0, α ∈ [0, 1). Then T has a unique fixed point in X.

Proof. The proof of the corollary immediately follows since

max[ρ(x, y, t), ρ(x, T (x), t), ρ(y, T (y), t)]
≤ max[ρ(x, y, t), ρ(x, T (x), t), ρ(y, T (y), t),

ρ(x, T (y), t), ρ(T (x), y, t)]

�

Theorem 3.3. Let (X, ρ) be a complete parametric metric space and T a continuous
mapping satisfying the following condition:

ρ(T x, T y, t) ≤ α[ρ(x, T (x), t), ρ(y, T (y), t)] + β[ρ(x, T (y), t), ρ(T (x), y, t)]

for all x, y ∈ X, and α + β <
1

2
, α, β ∈

[
0,

1

2

)
. Then T has a fixed point in X.
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Proof. Choose x0 ∈ X be arbitrary, to define the iterative sequence {xn}n∈N as follows,
T xn = xn+1 for n = 1, 2, 3, . . . Taking x = xn and y = xn+1 in (1), we obtain

ρ(T xn, T xn+1, t) ≤ α[ρ(xn, T (xn), t) + ρ(xn+1, T (xn+1), t)]
+ β[ρ(xn, T (xn+1), t) + ρ(T (xn), xn+1, t)]
≤ α[ρ(xn, xn+1, t) + ρ(xn+1, xn+2, t)]

+ β[ρ(xn, xn+2, t) + ρ(xn+1, xn+1, t)]
≤ α[ρ(xn, xn+1, t) + ρ(xn+1, xn+2, t)]

+ β[ρ(xn, xn+2, t)]
ρ(xn+1, xn+2, t) ≤ α[ρ(xn, xn+1, t) + ρ(xn+1, xn+2, t)]

+ β[ρ(xn+1, xn, t) + ρ(xn+1, xn+2, t)]
ρ(xn+1, xn+2, t) ≤ (α + β)[ρ(xn, xn+1, t) + ρ(xn+1, xn+2, t)]
ρ(xn+1, xn+2, t) ≤ Lρ(xn, xn+1, t) where L = (α + β)

(1 − (α + β))

Hence by induction, we obtain

ρ(xn+1, xn+2, t) ≤ Ln+1ρ(x0, x1, t)

By Lemma 2.5, {xn}n∈N is a Cauchy sequence in X. But X is a complete parametric
metric space; hence,{xn}n∈N is converges. Call the limit x∗ ∈ X. Then, xn → x∗ as
n → +∞. By continuity of T we have,

T x∗ = T ( lim
n→∞ xn) = lim

n→∞ T xn = lim
n→∞ xn+1 = x∗.

That is, T x∗ = x∗. Thus, T has a fixed point in X. �

Theorem 3.4. Let (X, ρ) be a complete parametric metric space and T a continuous
mapping satisfying the following condition:

ρ(T x, T y, t) + αρ(y, T x, t) ≥ β
ρ(x, T x, t)ρ(y, T y, t)

ρ(x, y, t)
+ γρ(x, y, t)

for all x, y ∈ X, x �= y, and for all t > 0, where α, β, γ ≥ 0 are real constants and
β + γ − 2α > 1, γ − α > 1. Then T has a unique fixed point in X.

Proof. Choose x0 ∈ X be arbitrary, to define the iterative sequence {xn}n∈N as follows,
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T xn = xn−1 for n = 1, 2, 3, . . . Taking x = xn and y = xn+1 in (1), we obtain

ρ(T xn+1, T xn+2, t) + αρ(xn+2, T xn+1t) ≥ β
ρ(xn+1, T xn+1, t)ρ(xn+2, T xn+2, t)

ρ(xn+1, xn+2, t)

+γρ(xn+1, xn+2, t).

ρ(xn, xn+1, t) + αρ(xn+2, xn, t) ≥ β
ρ(xn+1, xn, t)ρ(xn+2, xn+1, t)

ρ(xn+1, xn+2, t)
+ γρ(xn+1, xn+2, t).

ρ(xn, xn+1, t) + αρ(xn+2, xn, t) ≥ β
ρ(xn+1, xn, t)ρ(xn+1, xn+2, t)

ρ(xn+1, xn+2, t)
+ γρ(xn+1, xn+2, t).

ρ(xn, xn+1, t) + αρ(xn, xn+2, t) ≥ βρ(xn, xn+1, t) + γρ(xn+1, xn+2, t)

ρ(xn, xn+1, t) + αρ(xn, xn+1, t) + αρ(xn+1, xn+2, t) ≥ βρ(xn, xn+1, t) + γρ(xn+1, xn+2, t)

(1 + α − β)ρ(xn, xn+1, t) ≥ (γ − α)ρ(xn+1, xn+2, t)

for all t > 0. The last inequality gives

ρ(xn+1, xn+2, t) ≤ 1 + α − β

γ − α
ρ(xn, xn+1, t)

= kρ(xn, xn+1, t) where k = 1 + α − β

γ − α
< 1.

Hence by induction, we get

ρ(xn+1, xn+2, t) ≤ kn+1ρ(x0, x1, t)

By Lemma 2.5, {xn}n∈N is a Cauchy sequence in X. But X is a complete parametric
metric space; hence,{xn}n∈N is converges. Call the limit x∗ ∈ X. Then, xn → x∗ as
n → +∞. By continuity of T we have,

T x∗ = T ( lim
n→∞ xn) = lim

n→∞ T xn = lim
n→∞ xn−1 = x∗.

That is, T x∗ = x∗; thus, T has a fixed point in X.

Uniqueness:
Let y∗ be another fixed point of T in X; then Ty∗ = y∗ and T x∗ = x∗. Now,

ρ(T x∗, T y∗, t) + αρ(y∗, T x∗, t) ≥ β
ρ(x∗, T x∗, t)ρ(y∗, T y∗, t)

ρ(x∗, y∗, t)
+ γρ(x∗, y∗, t)

ρ(x∗, y∗, t) + αρ(x∗, y∗, t) ≥ γρ(x∗, y∗, t)
ρ(x∗, y∗, t) ≥ (γ − α)ρ(x∗, y∗, t)

ρ(x∗, y∗, t) ≤ 1

γ − α
ρ(x∗, y∗, t)

This is true only when ρ(x∗, y∗, t) = 0.

⇒ x∗ = y∗.
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Hence T has a unique fixed point in X. �

Theorem 3.5. Let (X, ρ) be a complete parametric metric space and T a continuous
mapping satisfying the following condition:

ρ(T x, T y, t) + α min{ρ(x, T y, t), ρ(y, T x, t)}
≥ β

ρ(x, T x, t)[δ + ρ(y, T y, t)]
δ + ρ(x, y, t)

+ γρ(x, y, t)

for all x, y ∈ X, x �= y, and for all t > 0, where δ ≥ 1, and α, β, γ ≥ 0 are real
constants and β + γ − α > 1 + α, γ > 1 + α. Then T has a fixed point in X.

Proof. Choose x0 ∈ X be arbitrary, to define the iterative sequence {xn}n∈N as follows,
T xn = xn−1 for n = 1, 2, 3, . . . Taking x = xn and y = xn+1 in (1), we obtain

ρ(T xn+1, T xn+2, t) + α min{ρ(xn+1, T xn+2, t), ρ(xn+2, T xn+1t)}
≥ β

ρ(xn+1, T xn+1, t)[δ + ρ(xn+2, T xn+2, t)]
δ + ρ(xn+1, xn+2, t)

+ γρ(xn+1, xn+2, t).

ρ(xn, xn+1, t) + α min{ρ(xn+1, xn+1, t), ρ(xn+2, xn, t)}
≥ β

ρ(xn+1, xn, t)[δ + ρ(xn+2, xn+1, t)]
δ + ρ(xn+1, xn+2, t)

+ γρ(xn+1, xn+2, t).

ρ(xn, xn+1, t) + α min{ρ(xn+1, xn+1, t), ρ(xn+2, xn, t)}
≥ β

ρ(xn+1, xn, t)[δ + ρ(xn+1, xn+2, t)]
δ + ρ(xn+1, xn+2, t)

+ γρ(xn+1, xn+2, t).

ρ(xn, xn+1, t) + αρ(xn, xn+2, t) ≥ βρ(xn, xn+1, t) + γρ(xn+1, xn+2, t)

ρ(xn, xn+1, t) + αρ(xn, xn+1, t) + αρ(xn+1, xn+2, t) ≥ βρ(xn, xn+1, t) + γρ(xn+1, xn+2, t)

(1 + α − β)ρ(xn, xn+1, t) ≥ (γ − α)ρ(xn+1, xn+2, t)

for all t > 0. The last inequality gives

ρ(xn+1, xn+2, t) ≤ 1 + α − β

γ − α
ρ(xn, xn+1, t) = kρ(xn, xn+1, t)

where k = 1 + α − β

γ − α
< 1. Hence by induction, we obtain

ρ(xn+1, xn+2, t) ≤ kn+1ρ(x0, x1, t)

By Lemma 2.5, {xn}n∈N is a Cauchy sequence in X. But X is a complete parametric
metric space; hence,{xn}n∈N is converges. Call the limit x∗ ∈ X. Then, xn → x∗ as
n → +∞. By continuity of T we have,

T x∗ = T ( lim
n→∞ xn) = lim

n→∞ T xn = lim
n→∞ xn−1 = x∗.
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That is, T x∗ = x∗; thus, T has a fixed point in X.

Uniqueness:
Let y∗ be another fixed point of T in X; then Ty∗ = y∗ and T x∗ = x∗. Now,

ρ(T x∗, T y∗, t) + α min{ρ(x∗, T y∗, t), ρ(y∗, T x∗, t)} ≥ β
ρ(x∗, T x∗, t)[δ + ρ(y∗, T y∗, t)]

δ + ρ(x∗, y∗, t)
+ γρ(x∗, y∗, t)

ρ(x∗, y∗, t) + αρ(x∗, y∗, t) ≥ γρ(x∗, y∗, t)
ρ(x∗, y∗, t) ≥ (γ − α)ρ(x∗, y∗, t)

ρ(x∗, y∗, t) ≤ 1

γ − α
ρ(x∗, y∗, t)

This is true only when ρ(x∗, y∗, t) = 0.

⇒ x∗ = y∗.

Hence T has a unique fixed point in X. �
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