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Abstract

The main object of this paper is to introduce a new class GJn(m,λ, α) define by
Ruscheweyh operator involving function f(z) ∈ An. Parallel results, for some
related classes including the class of starlike, convex and Bazilevic functions re-
spectively, are also obtained.
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1. INTRODUCTION AND DEFINITIONS

Let An denote the class of function of the form

f(z) = z +
∞∑

k=n+1

akz
k (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1} and the space of holomorphic
functions in U, n ∈ N = {1, 2, 3, · · · }.
Let Jn denote the subclass of functions that are univalent in U.
By S∗n(α) ⊂ Jn denote the subclass of starlike functions of order α, 0 ≤ α < 1 which satisfies
the condition

<
(
zf ′(z)

f(z)

)
> α (z ∈ U). (1.2)

Further, a function f(z) belonging to Kn(α) ⊂ Jn is said to be convex functions of order α,
0 ≤ α < 1 in U, if and only if

<
(
zf ′′(z)

f ′(z)
+ 1

)
> α (z ∈ U), (1.3)

server
Text Box



34 Timilehin G. Shaba

and denote byRn(α) the class of functions in Jn which satisfy the condition

<{f ′(z)} > α (z ∈ U).

It is well known that Kn(α) ⊂ S∗n(α) ⊂ Jn.

In [5] Ruscheweyh has define the operator

Dh : An −→ An, n ∈ N = {1, 2, 3, 4, · · · },

D0f(z) = f(z)

D1f(z) = zf ′(z)

(h+ 1)Dh+1f(z) = z[Dhf(z)]′ + hDhf(z) (z ∈ U),

We note that if f ∈ An , then

Dhf(z) = z +
∞∑

k=n+1

(h+ k − 1)!

h!(k − 1)!
akz

k (z ∈ U). (1.4)

where h ∈ N ∪ {0} = {0, 1, 2, 3, . . .}.

To prove our main theorem we shall need the following lemma.

Lemma 1.1. [3] Let q be analytic in U with q(0) = 1 and suppose that

<
(
1 +

zq′(z)

q(z)

)
>

3α− 1

2α
(z ∈ U).

Then <(q(z)) > α in U and 1
2
≤ α < 1.

2. MAIN RESULTS

Definition 2.1. A function f(z) ∈ An is said to be a member of the class GJn(h, λ, α)
if ∣∣∣∣∣Dh+1f(z)

z

(
Dhf(z)

z

)λ
− 1

∣∣∣∣∣ < 1− α, z ∈ U , λ ≥ −2 and
1

2
≤ α < 1

(2.1)
where Dh is the Ruscheweyh operator. Note that inequality (2.1) implies that

Re

(
Dh+1f(z)

z

(
Dhf(z)

z

)λ)
> α.

1

2
≤ α < 1.
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Remark 2.2. The function family GJn(h, λ, α) is a comprehensive class of analytic
functions which includes some known and new classes of analytic and univalent func-
tions. For example,

1. GJn(0,−1, α) ≡ S∗n(α),

2. GJn(1,−1, α) ≡ Kn(α),

3. GJn(0, 0, α) ≡ Rn(α),

4. GJ1(0, λ, α) ≡ B(λ, α) ={
f ∈ A :

∣∣∣∣f ′(z)(f(z)z )λ − 1

∣∣∣∣ < 1− α;λ ≥ −1, 0 ≤ α < 1, z ∈ U
}

intoduced by Singh[4] and studied by Babalola[1].

5. GS1(0,−2, α) ≡ B(α) studied by Frasin and Darus[2].

Theorem 2.3. If f(z) ∈ An satisfies the condition

<
(
(h+ 2)Dh+2f(z)

Dh+1f(z)
+
λ(h+ 1)Dh+1f(z)

Dhf(z)
− (1 + λ)(h+ 1)

)
>

3α− 1

2α
(2.2)

then f(z) ∈ GJn(h, λ, α)

Proof. For z ∈ U, define an analytic function q(z) with q(0) = 1 by

q(z) =
Dn+1f(z)

z

(
Dnf(z)

z

)λ
By simplification,

ln q(z) = ln(Dh+1f(z))− ln(z) + λ ln(Dhf(z))− λ ln(z)

and by simple differentiation it implies that

q′(z)

q(z)
=

(Dh+1f(z))′

(Dh+1f(z))
− 1

z
+ λ

(Dhf(z))′

(Dhf(z))
− λ1

z

so that,

<
(
1 +

zq′(z)

q(z)

)
= <

(
(h+ 2)Dh+2f(z)

Dh+1f(z)
+
λ(h+ 1)Dh+1f(z)

Dhf(z)
− (1 + λ)(h+ 1)

)
>

3α− 1

2α

which, by Lemma 1.1, implies

Re

(
Dn+1f(z)

z

(
Dnf(z)

z

)λ)
> α,

(
1

2
≤ α < 1

)
.
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Remark 2.4. When n = 1 and h = 0 in Theorem 2.3, we have the following theorem.

Theorem 2.5. [1] If f ∈ A satisfies

<
{(

1 +
zf ′′(z)

f ′(z)

)
+ λ

zf ′(z)

f(z)

}
> λ+

3α− 1

2α
, z ∈ U

Then <(q(z)) > α in U and 1
2
≤ α < 1.

From Theorem 2.3, the following Corollaries hold true.

Corollary 2.6. If f(z) ∈ An, and

<
{
4z2f ′′(z) + z3f ′′′(z) + 2zf ′(z)

z2f ′′(z) + 2zf ′(z)

}
>

1

2
(z ∈ U),

then
< [zf ′′(z) + f ′(z)] >

1

2
, (z ∈ U).

Corollary 2.7. If f(z) ∈ An and

<
{
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

}
> −3

2
(z ∈ U),

then

<
[
zf ′(z)

f(z)

]
>

1

2
.

That is f(z) is starlike of order 1
2
, hence f ∈ GJn(0,−1, 12) ≡ S∗n(α).

Corollary 2.8. If f(z) ∈ An and

<
{
1 +

zf ′′(z)

f ′(z)

}
>

1

2
(z ∈ U),

then
< [f ′(z)] >

1

2
.

In another words, if the function f(z) is convex of order 1
2 , then f(z) ∈ GJn(0, 0, 12) ≡ Rn(

1
2)

Corollary 2.9. If f(z) ∈ An and

<
{
2

(
zf ′′(z)

f ′(z)
+ 1

)
− zf ′(z)

f(z)

}
> 0 (z ∈ U),

then

<

[
z

1
2f ′(z)

f
1
2 (z)

]
>

1

2
.

That is f(z) is Bazilevic of order 1
2
, type 1

2
in U.
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Corollary 2.10. If f(z) ∈ An and

<
{
2

(
zf ′′(z)

f ′(z)
+ 1

)
+
zf ′(z)

f(z)

}
> 1 (z ∈ U),

then

<

[
f

1
2 (z)f ′(z)

z
1
2

]
>

1

2
.

That is f(z) is Bazilevic of order 1
2
, type 3

2
in U.

CONCLUSION

In this paper, using Ruscheweyh operator, we defined new subclass of univalent function
and established some of its properties. Results obtained provide properties of certain
subclasses of univalent functions.
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