A Subclass of Univalent Functions Defined by Ruscheweyh Operator

Timilehin G. Shaba
Department of Mathematics, University of Ilorin, Ilorin, Nigeria.

Abstract

The main object of this paper is to introduce a new class $\mathcal{G} \mathcal{J}_{n}(m, \lambda, \alpha)$ define by Ruscheweyh operator involving function $f(z) \in \mathcal{A}_{n}$. Parallel results, for some related classes including the class of starlike, convex and Bazilevic functions respectively, are also obtained.

Keywords: Univalent function, starlike function, convex function, Bazilevic function, Ruscheweyh Operator.

1. INTRODUCTION AND DEFINITIONS

Let \mathcal{A}_{n} denote the class of function of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ and the space of holomorphic functions in $\mathbb{U}, n \in \mathbb{N}=\{1,2,3, \cdots\}$.
Let \mathcal{J}_{n} denote the subclass of functions that are univalent in \mathbb{U}.
By $S_{n}^{*}(\alpha) \subset \mathcal{J}_{n}$ denote the subclass of starlike functions of order $\alpha, 0 \leq \alpha<1$ which satisfies the condition

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U}) . \tag{1.2}
\end{equation*}
$$

Further, a function $f(z)$ belonging to $\mathcal{K}_{n}(\alpha) \subset \mathcal{J}_{n}$ is said to be convex functions of order α, $0 \leq \alpha<1$ in \mathbb{U}, if and only if

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)>\alpha \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

and denote by $\mathcal{R}_{n}(\alpha)$ the class of functions in \mathcal{J}_{n} which satisfy the condition

$$
\Re\left\{f^{\prime}(z)\right\}>\alpha \quad(z \in \mathbb{U})
$$

It is well known that $\mathcal{K}_{n}(\alpha) \subset S_{n}^{*}(\alpha) \subset \mathcal{J}_{n}$.
In [5] Ruscheweyh has define the operator

$$
\begin{gathered}
D^{h}: \mathcal{A}_{n} \longrightarrow \mathcal{A}_{n}, n \in \mathbb{N}=\{1,2,3,4, \cdots\}, \\
D^{0} f(z)=f(z) \\
D^{1} f(z)=z f^{\prime}(z) \\
(h+1) D^{h+1} f(z)=z\left[D^{h} f(z)\right]^{\prime}+h D^{h} f(z) \quad(z \in \mathbb{U}),
\end{gathered}
$$

We note that if $f \in \mathcal{A}_{n}$, then

$$
\begin{equation*}
D^{h} f(z)=z+\sum_{k=n+1}^{\infty} \frac{(h+k-1)!}{h!(k-1)!} a_{k} z^{k} \quad(z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

where $h \in \mathbb{N} \cup\{0\}=\{0,1,2,3, \ldots\}$.
To prove our main theorem we shall need the following lemma.
Lemma 1.1. [3] Let q be analytic in \mathbb{U} with $q(0)=1$ and suppose that

$$
\Re\left(1+\frac{z q^{\prime}(z)}{q(z)}\right)>\frac{3 \alpha-1}{2 \alpha} \quad(z \in \mathbb{U}) .
$$

Then $\Re(q(z))>\alpha$ in \mathbb{U} and $\frac{1}{2} \leq \alpha<1$.

2. MAIN RESULTS

Definition 2.1. A function $f(z) \in \mathcal{A}_{n}$ is said to be a member of the class $\mathcal{G} \mathcal{J}_{n}(h, \lambda, \alpha)$ if

$$
\begin{equation*}
\left|\frac{D^{h+1} f(z)}{z}\left(\frac{D^{h} f(z)}{z}\right)^{\lambda}-1\right|<1-\alpha, \quad z \in U \quad, \quad \lambda \geq-2 \quad \text { and } \quad \frac{1}{2} \leq \alpha<1 \tag{2.1}
\end{equation*}
$$

where D^{h} is the Ruscheweyh operator. Note that inequality (2.1) implies that

$$
\operatorname{Re}\left(\frac{D^{h+1} f(z)}{z}\left(\frac{D^{h} f(z)}{z}\right)^{\lambda}\right)>\alpha . \quad \frac{1}{2} \leq \alpha<1 .
$$

Remark 2.2. The function family $\mathcal{G} \mathcal{J}_{n}(h, \lambda, \alpha)$ is a comprehensive class of analytic functions which includes some known and new classes of analytic and univalent functions. For example,

1. $\mathcal{G} \mathcal{J}_{n}(0,-1, \alpha) \equiv S_{n}^{*}(\alpha)$,
2. $\mathcal{G J}_{n}(1,-1, \alpha) \equiv \mathcal{K}_{n}(\alpha)$,
3. $\mathcal{G J}_{n}(0,0, \alpha) \equiv \mathcal{R}_{n}(\alpha)$,
4. $\mathcal{G} \mathcal{J}_{1}(0, \lambda, \alpha) \equiv \mathcal{B}(\lambda, \alpha)=$
$\left\{f \in \mathcal{A}:\left|f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\lambda}-1\right|<1-\alpha ; \lambda \geq-1,0 \leq \alpha<1, z \in \mathbb{U}\right\}$
intoduced by Singh[4] and studied by Babalola[1].
5. $\mathcal{G} \mathcal{S}_{1}(0,-2, \alpha) \equiv \mathcal{B}(\alpha)$ studied by Frasin and Darus $[2]$.

Theorem 2.3. If $f(z) \in \mathcal{A}_{n}$ satisfies the condition

$$
\begin{equation*}
\Re\left(\frac{(h+2) D^{h+2} f(z)}{D^{h+1} f(z)}+\frac{\lambda(h+1) D^{h+1} f(z)}{D^{h} f(z)}-(1+\lambda)(h+1)\right)>\frac{3 \alpha-1}{2 \alpha} \tag{2.2}
\end{equation*}
$$

then $f(z) \in \mathcal{G J}_{n}(h, \lambda, \alpha)$
Proof. For $z \in \mathbb{U}$, define an analytic function $q(z)$ with $q(0)=1$ by

$$
q(z)=\frac{D^{n+1} f(z)}{z}\left(\frac{D^{n} f(z)}{z}\right)^{\lambda}
$$

By simplification,

$$
\ln q(z)=\ln \left(D^{h+1} f(z)\right)-\ln (z)+\lambda \ln \left(D^{h} f(z)\right)-\lambda \ln (z)
$$

and by simple differentiation it implies that

$$
\frac{q^{\prime}(z)}{q(z)}=\frac{\left(D^{h+1} f(z)\right)^{\prime}}{\left(D^{h+1} f(z)\right)}-\frac{1}{z}+\lambda \frac{\left(D^{h} f(z)\right)^{\prime}}{\left(D^{h} f(z)\right)}-\lambda \frac{1}{z}
$$

so that,
$\Re\left(1+\frac{z q^{\prime}(z)}{q(z)}\right)=\Re\left(\frac{(h+2) D^{h+2} f(z)}{D^{h+1} f(z)}+\frac{\lambda(h+1) D^{h+1} f(z)}{D^{h} f(z)}-(1+\lambda)(h+1)\right)>\frac{3 \alpha-1}{2 \alpha}$
which, by Lemma 1.1, implies

$$
\operatorname{Re}\left(\frac{D^{n+1} f(z)}{z}\left(\frac{D^{n} f(z)}{z}\right)^{\lambda}\right)>\alpha, \quad\left(\frac{1}{2} \leq \alpha<1\right) .
$$

Remark 2.4. When $n=1$ and $h=0$ in Theorem 2.3, we have the following theorem.
Theorem 2.5. [1] If $f \in \mathcal{A}$ satisfies

$$
\Re\left\{\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\lambda \frac{z f^{\prime}(z)}{f(z)}\right\}>\lambda+\frac{3 \alpha-1}{2 \alpha}, \quad z \in \mathbb{U}
$$

Then $\Re(q(z))>\alpha$ in \mathbb{U} and $\frac{1}{2} \leq \alpha<1$.
From Theorem 2.3, the following Corollaries hold true.
Corollary 2.6. If $f(z) \in \mathcal{A}_{n}$, and

$$
\Re\left\{\frac{4 z^{2} f^{\prime \prime}(z)+z^{3} f^{\prime \prime \prime}(z)+2 z f^{\prime}(z)}{z^{2} f^{\prime \prime}(z)+2 z f^{\prime}(z)}\right\}>\frac{1}{2} \quad(z \in \mathbb{U})
$$

then

$$
\Re\left[z f^{\prime \prime}(z)+f^{\prime}(z)\right]>\frac{1}{2}, \quad(z \in \mathbb{U})
$$

Corollary 2.7. If $f(z) \in \mathcal{A}_{n}$ and

$$
\Re\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right\}>-\frac{3}{2} \quad(z \in \mathbb{U})
$$

then

$$
\Re\left[\frac{z f^{\prime}(z)}{f(z)}\right]>\frac{1}{2} .
$$

That is $f(z)$ is starlike of order $\frac{1}{2}$, hence $f \in \mathcal{G} \mathcal{J}_{n}\left(0,-1, \frac{1}{2}\right) \equiv S_{n}^{*}(\alpha)$.
Corollary 2.8. If $f(z) \in \mathcal{A}_{n}$ and

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\frac{1}{2} \quad(z \in \mathbb{U})
$$

then

$$
\Re\left[f^{\prime}(z)\right]>\frac{1}{2}
$$

In another words, if the function $f(z)$ is convex of order $\frac{1}{2}$, then $f(z) \in \mathcal{G} \mathcal{J}_{n}\left(0,0, \frac{1}{2}\right) \equiv \mathcal{R}_{n}\left(\frac{1}{2}\right)$
Corollary 2.9. If $f(z) \in \mathcal{A}_{n}$ and

$$
\Re\left\{2\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)-\frac{z f^{\prime}(z)}{f(z)}\right\}>0 \quad(z \in \mathbb{U})
$$

then

$$
\Re\left[\frac{z^{\frac{1}{2}} f^{\prime}(z)}{f^{\frac{1}{2}}(z)}\right]>\frac{1}{2} .
$$

That is $f(z)$ is Bazilevic of order $\frac{1}{2}$, type $\frac{1}{2}$ in \mathbb{U}.

Corollary 2.10. If $f(z) \in \mathcal{A}_{n}$ and

$$
\Re\left\{2\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)+\frac{z f^{\prime}(z)}{f(z)}\right\}>1 \quad(z \in \mathbb{U})
$$

then

$$
\Re\left[\frac{f^{\frac{1}{2}}(z) f^{\prime}(z)}{z^{\frac{1}{2}}}\right]>\frac{1}{2} .
$$

That is $f(z)$ is Bazilevic of order $\frac{1}{2}$, type $\frac{3}{2}$ in \mathbb{U}.

CONCLUSION

In this paper, using Ruscheweyh operator, we defined new subclass of univalent function and established some of its properties. Results obtained provide properties of certain subclasses of univalent functions.

REFERENCES

[1] K.O. Babalola, 2014," Combinations of geometric expressions implying schlichtness," Analele Universitatii din Oradea, vol. 1, pp. 91-94.
[2] B.A. Frasin and M. Darus, 2001,"On certain analytic univalent functions," International Journal of Mathematics and Mathematical Sciences, vol. 25, pp. 305-310.
[3] B.A. Frasin and J.M. Jahangiri, 2008,"A new and comprehensive class of analytic functions," Analele Universitatii din Oradea, vol. 15, pp. 61-64.
[4] R. Singh, 1973, "On bazilevic functions," Proceedings of the American Mathematical Society, vol. 38, pp. 261-271.
[5] St. Ruscheweyh, 1975, "New criteria for univalent functions," Proceedings of the American Mathematical Society, vol. 49, pp. 109-115.

