A *n* Dimensional Convex Hull in a n + 1Dimesion

Israel Ramirez Nuñez

High School Student

"Universidad del Valle de México", campus Chihuahua, Chihuahua, México.

Abstract

Suppose \mathbb{e}^n defines the surface of (n-1) –sphere then we prove for a n dimensional convex hull C such that C is a subset of an open ball, so C is the projection of a set of points B in a n + 1 dimension such that B is a subset of \mathbb{e}^{n+1} . From this we present a proof where for each set B there exist a polytope P such that B is a subset of P. The results are generalize for polytopes.

Keywords. Polytopes, Convex hull, Arrangements of points, flats.

1. INTRODUCTION

Suppose we have a polar coordinate (α, r) and for some positive integer *i*

$$\left(\frac{a_i}{z}\right) \coloneqq \alpha$$

Where if we have a number t such that t divides α and 360 then

$$z = \frac{360}{t}$$

For all *i*

$$[a_i \in \mathbb{N}^+ | 0 \le a_i \le z]$$

To generalize this for a *n* dimensional space with coordinates $(\alpha, \beta, ..., r)$ then *t* must divide 360 and all the angles.

We call this kind of coordinates as the "*n*-polytope coordinate system". Now We present a $e_n - polytope$ as a *n* dimensional polytope *P* where all its points P(v) are defined by the *n*-polytope coordinates. From this we define \mathbb{P}_{rn} as a *n*-polytope coordinate system for some radio *r*.

2. CONVEX HULLS

Definition 2.1 e^n is the surface of (n-1) –sphere

Definition 2.2 A *n* dimensional open ball of radio *r* is defined by $B_r(x)_n$

Suppose we have a *n* dimensional convex hull C where $C \subseteq B_r(x)_n$ therefore we obtain the next theorem.

Theorem 2.1 $C = [R(B)|B \subseteq P]$ where P is a $e_{n+1} - polytope$, B is a set of points in a n + 1 dimension and the function R(B) is the projection of the set B in a n dimensional space.

Proof.

Suppose the set C belongs to a 2-dimensional space and using the Euclidian coordinates we define the elements of C as

 (x_k, y_k)

Therefore, for each point k of C there exist a number z_k such that

$$(x_k, y_k, z_k) \in \mathbb{e}^3$$

This means that the coordinates (x_k, y_k, z_k) can be expressed in the 3-polytope coordinate system, Therefore we can construct a e_3 – *polytope* which goes through all points (x_k, y_k, z_k) .

To generalize this in any dimension we can say that for any point $(x_1, x_2 \dots x_n)$ there exist a number x_{n+1} such that $(x_1, x_2 \dots x_{n+1}) \in e^{n+1}$

Corollary 2.1 For a *n* dimensional polytope *C* such that $\subseteq B_r(x)_n$, then there exist *B* such that $B \subseteq P$ and R(B) = C

In general, if we have a set of points *C* in a *n* dimensional space such that $C \not\subseteq \mathbb{P}_{rn}$ and $C \subseteq B_r(x)_n$ therefore there exist a set *B* such that $B \subseteq P \subseteq \mathbb{P}_{r(n+1)}$ and R(B) = C

CONCLUSION.

Here we propose a future use of this paper. From the recent article of Stephen Wolfram, he proposes that universe is a hyperplane, but we think it could be a $e_4 - polytope$.

REFERENCES

- [1] Martini, H. Convex polytopes whose projection bodies and difference sets are polars. Discrete Comput Geom 6, 83–91 (1991). https://doi.org/10.1007/BF02574676
- Shephard, G. (1972). Sections and projections of convex Shephard, G. (1972). Sections and projections of convex polytopes. *Mathematika*, 19(2), 144-162. doi:10.1112/S0025579300005593
- [3] Clinch, K., Nixon, A., Schulze, B. *et al.* Pairing Symmetries for Euclidean and Spherical Frameworks. *Discrete Comput Geom* (2020). https://doi.org/10.1007/s00454-020-00198-9
- [4] Kohl, F., Olsen, M. & Sanyal, R. Unconditional Reflexive Polytopes. *Discrete Comput Geom* (2020). https://doi.org/10.1007/s00454-020-00199-8
- [5] Nguyen, D., Pak, I. On the Number of Integer Points in Translated and Expanded Polyhedra. *Discrete Comput Geom* (2020). https://doi.org/10.1007/s00454-020-00178-z

Israel Ramirez Nuñez