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Abstract

Suppose e™ defines the surface of (n — 1) —sphere then we prove for a n
dimensional convex hull C such that C is a subset of an open ball, so C is the
projection of a set of points B in a n + 1 dimension such that B is a subset of
e™*1. From this we present a proof where for each set B there exist a polytope
P such that B is a subset of P.The results are generalize for polytopes.
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1. INTRODUCTION

Suppose we have a polar coordinate (a, ) and for some positive integer i

-

Where if we have a number t such that ¢ divides « and 360 then

360
t

7 =

For all i
[ai € N+|0 <aq; < Z]

To generalize this for a n dimensional space with coordinates («, 3, ..., ) then t must
divide 360 and all the angles.
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We call this kind of coordinates as the “n —polytope coordinate system”. Now We
present a e, — polytope as an dimensional polytope P where all its points P(v)
are defined by the n —polytope coordinates. From this we define P,,, asa n —polytope
coordinate system for some radio r.

2. CONVEX HULLS
Definition 2.1 e" is the surface of (n — 1) —sphere
Definition 2.2 A n dimensional open ball of radio r is defined by B,.(x),,

Suppose we have a n dimensional convex hull € where C € B, (x),, therefore we obtain
the next theorem.

Theorem 2.1 C =[R(B)|B < P] where Pisa e,,., — polytope, B is a set of points
in a n+ 1 dimension and the function R(B) is the projection of the set B inan
dimensional space.

Proof.

Suppose the set € belongs to a 2-dimensional space and using the Euclidian coordinates
we define the elements of C as

Xk Vi)

Therefore, for each point k of C there exist a number z; such that

(Xp» Vi 21 ) € @7
This means that the coordinates (xy, v, zx) can be expressed in the 3 —polytope

coordinate system, Therefore we can construct a e; — polytope which goes through
all points (xy, Vi, Zx).

To generalize this in any dimension we can say that for any point (x;, x, ... x,,) there
exist a number x,,,; such that (x;,x, ...x,4;) € @**1

Corollary 2.1 For a n dimensional polytope C such that € B,.(x),, , then there exist B
suchthat BS Pand R(B) =C

In general, if we have a set of points C in a n dimensional space such that ¢ & P,.,
and C < B (x), therefore there existaset B suchthat B € P € P,.(,,1yand R(B) =
C
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CONCLUSION.

Here we propose a future use of this paper. From the recent article of Stephen Wolfram,
he proposes that universe is a hyperplane, but we think it could bea e, — polytope.
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