A New and Simple Way to Prove Pythagorean Theorem

Kavan Gautamkumar Prajapati
Shree Narayana Higher Secondary School; Ahmedabad, India

Abstract

The Pythagoean Theorem is the most famous and the best known theorem in the world which brought extraordinary development, not only in mathematics, but also in non-mathematical fields. There seems to be about more than 370 proofs of this theorem exists, from Pythagoras' own proof in $6^{\text {th }}$ century B.C. to modern proofs of this theorem.

This paper provides a new way to prove Pythagorean theorem algebraically using known results. It is very useful to prove Pythagorean theorem as it is one of the most important theorems in mathematics.

So, this paper contributes by providing a new and simple proof of Pythagorean theorem which even a school student can understand.

Keywords: Pythagorean Theorem, Proof, Similarity of Triangles.

INTRODUCTION

There are many proofs available for Pythagorean theorem, from Pythagoras' own proof in $6^{\text {th }}$ century B.C., through Euclid's proof, Thabit ibn Qurra's proof in $9^{\text {th }}$ century, the Indian mathematician Bhaskara's proof in $12^{\text {th }}$ century, James Grafield's proof in $19^{\text {th }}$ century to modern proofs of this theorem.

The book: The Pythagorean Proposition [1] written by E. S. Loomis, first edition published in 1928, is a major collection of proofs of Pythagoras theorem. This book has been collected as many as 370 different proofs of Pythagorean Theorem

The aim of this paper is to provide a new and simple way to prove Pythagorean Theorem using properties of similar of triangles.

PYTHAGOREAN THEOREM

The Pythagorean Theorem, first proved by Pythagoras of Samos who lived in $6^{\text {th }}$ century B.C., is the fundamental relation in Euclidean geometry among the three sides of a right triangle in a plane. The statement of this theorm is as follows:
" In a space which satisfies the axioms of plane Euclidean geometry, the square of the hypotenuse of a right triangle is equal to the sum of the squares of its two other sides." [2]

Figure 1

Mathematically, we can express the Pythagorean theorem as

$$
a^{2}+b^{2}=c^{2}
$$

where c is the length of hypotenuse of a right triangle and a and b are the length of its other two sides.

From figure 1,
Red Area + Yellow Area $=$ Green Area

In order to prove Pythagorean theorem we will use the following known results:
\rightarrow Corresponding sides of similar triangles are in the same ratio.
\rightarrow Altitude on hypotenuse of a right triangle divides the triangle into two smaller triangles which are similar to original triangle.

Now we will prove this theorem algebraically.

PROOF OF PYTHAGOREAN THEOREM

Let us consider a right $\triangle A B C$ where $\angle B$ is right angle and $A B=a, B C=b$ and $A C=$ c.

We have to prove that $a^{2}+b^{2}=c^{2}$.

Figure 2.

From Figure 2, in $\triangle A B C$, OB is the altitude on AC . Let us construct $\triangle O A P$ which is congruent to $\triangle A O B$ and also construct $\triangle Q C O$ which is congruent to $\triangle B O C$ as shown in Figure 2.

Let $C O=x$.
$\therefore O A=c-x$

By construction, as $\triangle O A P \cong \triangle A O B$,

$$
A B=O P=a
$$

and

$$
A P=O B
$$

$\therefore A B O P$ is a parallelogram.

Also, as $\triangle Q C O \cong \triangle B O C$,

$$
\begin{array}{ll}
& B C=Q O=b \\
\text { and } & O B=C Q
\end{array}
$$

$\therefore B C Q O$ is a parallelogram.

From above discussion, we can conclude that

$$
\begin{equation*}
A P=O B=C Q \tag{1}
\end{equation*}
$$

We know that in a right triangle, the altitude on hypotenuse divides the triangle into two smaller triangles which are similar to original triangle.

So we can conclude that

$$
\begin{equation*}
\triangle A B C \sim \triangle A O B \sim \triangle B O C \sim \triangle \mathrm{OAP} \sim \triangle \mathrm{QCO} \tag{2}
\end{equation*}
$$

As $\triangle A B C \sim \triangle A O B$ and $\triangle A B C \sim \triangle B O C$,

$$
\begin{aligned}
& \frac{A B}{B C}=\frac{A O}{O B} \\
& \frac{A B}{B C}=\frac{B O}{O C}
\end{aligned}
$$

and

From the above two equations,

$$
\frac{A O}{O B}=\frac{B O}{O C}
$$

i.e.

$$
O B^{2}=A O \cdot O C
$$

or
$O B^{2}=x(c-x)$
or

$$
O B=\sqrt{x(c-x)}
$$

From (1) and the above equation,

$$
\begin{equation*}
O B=A P=C Q=\sqrt{x(c-x)} \tag{3}
\end{equation*}
$$

From (1) and (2),
$A P=C Q$ and $\angle P A O=\angle Q C O=90^{\circ}$
$\therefore A C Q P$ is a rectangle.
Now, $\angle P O A+\angle P O Q+\angle Q O C=180^{\circ}$

But $\angle P O A$ and $\angle Q O C$ are complementary angles.
$\Rightarrow \angle P O Q=90^{\circ}$
i.e. $\triangle P O Q$ is a right triangle.

Now, from figure 2,
$\operatorname{ar}(A C Q P)=\operatorname{ar}(P A O)+\operatorname{ar}(Q C O)+\operatorname{ar}(P O Q)$
$\therefore A C \cdot C Q=\frac{P A \cdot A O}{2}+\frac{Q C \cdot C O}{2}+\frac{P O \cdot O Q}{2}$
$\therefore c \sqrt{x(c-x)}=\frac{(\sqrt{x(c-x)})(c-x)}{2}+\frac{x \sqrt{x(c-x)}}{2}+\frac{a b}{2}$

On dividing both sides of the equation by $\sqrt{x(c-x)}$, we get
$c=\frac{c-x}{2}+\frac{x}{2}+\frac{a b}{2 \sqrt{x(c-x)}}$
$\therefore c=\frac{c}{2}+\frac{a b}{2 \sqrt{x(c-x)}}$
$\therefore \sqrt{x(c-x)}=\frac{a b}{c}$
But $\sqrt{x(c-x)}=C Q$

So, $C Q=\frac{a b}{c}$

As $\triangle A B C \sim \triangle Q C O$,

$$
\begin{align*}
& \frac{O C}{C Q}=\frac{B C}{A B} \\
\therefore & \frac{O C}{\frac{a b}{c}}=\frac{b}{a} \\
\therefore & O C=\frac{b^{2}}{c} \tag{4}
\end{align*}
$$

As $\triangle A B C \sim \triangle O A P$,

$$
\begin{aligned}
& \frac{O P}{A O}=\frac{A C}{A B} \\
& \therefore \frac{a}{A O}=\frac{c}{a}
\end{aligned}
$$

$\therefore A O=\frac{a^{2}}{c}$

From figure 2,
$A O=A C-O C$
$\therefore A O=c-\frac{b^{2}}{c}$
$\therefore A O=\frac{c^{2}-b^{2}}{c}$

On comparing (5) and (6), we get

$$
\begin{array}{ll}
& \frac{a^{2}}{c}=\frac{c^{2}-b^{2}}{c} \\
\Rightarrow & a^{2}+b^{2}=c^{2} \\
\text { or } & \boldsymbol{A B}^{2}+\boldsymbol{B} \boldsymbol{C}^{2}=\boldsymbol{A} \boldsymbol{C}^{2}
\end{array}
$$

This proves the Pythagorean theorem.
It does not matter whether $a<b, a=b$ or $a>b$, this new proof of Pythagorean theorem can be used for any right triangle.

RESULTS

By deriving one of the most important theorems in mathematics, the Pythagorean theorem, this paper adds a new proof of this theorem in the total number of proofs available in the world.

AKNOWLEDGEMENTS

The author wants to thank U. H. Pankhania for his guidance in this paper.

REFERENCES

[1] Loomis, E.S., 1940, "The Pythagorean Proposition" Published by: National Council of Teachers of Mathematics
[2] Greensite, F., 2012. A New Proof of the Pythagorean Theorem and Its Application to Element Decompositions in Topological Algebras. International Journal of Mathematics and Mathematical Sciences, Volume 2012, 3.
[3] Krantz, Richard., 2011. The Pythagorean Theorem: The Story of Its Power and Beauty, by Alfred S. Posamentier. Journal of Mathematics and the Arts. 5. 157158. 10.1080/17513472.2011.580664.
[4] Maro, E., 2007. The Pythagorean Theorem: A 4,000-Year History. Princeton; Oxford: Princeton University Press. doi:10.2307/j.ctvh9w0ks
[5] Heath, Sir Thomas, 1921. "The 'Theorem of Pythagoras'". A History of Greek Mathematics (2 Vols.) (Dover Publications, Inc. (1981) ed.). Clarendon Press, Oxford. pp. 144 ff.
[6] Judith D. Sally; Paul Sally, 2007. "Chapter 3: Pythagorean triples". Roots to research: a vertical development of mathematical problems. American Mathematical Society Bookstore. p. 63

