
International Journal of Mathematics Research.
ISSN 0976-5840 Volume 14, Number 1 (2022), pp. 1-16
© International Research Publication House
http://www.irphouse.com

Every Tree is a Subtree of a k-Equitable Tree for any
k ≥ 2

Dr. N. Shanmugapriya

Lecturer, Mathematics section,
IT Department, Ibri College of Technology,

Ibri, Oman.

Abstract

As the Graceful Tree Conjecture and the characterization of graceful graphs are
extremely difficult problems to settle, different possible generalization of graceful
labeling were introduced for a better understanding of the above two problems.
One such generalization of graceful labeling is called k-equitable labeling, which
was introduced by Cahit [2] in 1990. For a graph G(V,E) and for a positive
integer k ≥ 2, a function f defined from the vertex set of G to {0, 1, 2, . . . , k− 1}
is called k-equitable if every edge uv is assigned the label |f(u)− f(v)|, then the
number of vertices labeled i and the number of vertices labeled j differ by at most
1 and the number of edges labeled i and the number of edges labeled j differ by at
most 1, for i, j, 0 ≤ i < j ≤ k − 1. Note that a graph with m edges, is graceful if
and only if it is m + 1 equitable. In 1990 Cahit [2] conjectured that every tree is
k-equitable for any k ≥ 2. This conjecture is equivalent to the celebrated Graceful
Tree Conjecture when k is the number of vertices of the tree. The result of Niall
Cairnie and Keith Edward [7] imply that the recognition of whether the graph is
k-equitable for k ≥ 2 is an NP-complete problem. The Cahit’s k-Equitable Tree
Conjecture and its relevance to the Graceful Tree Conjecture and the result that the
recognition of k equitable graph is NP-complete strongly motivated to understand
the structure of k equitable graphs. In this direction here in this paper we prove a
fundamental structural property of k-equitable trees that every tree is k-equitable.
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1. INTRODUCTION

In 1963, Ringel [8] conjectured that K2m+1, the complete graph on 2m + 1 vertices,
can be decomposed into 2m + 1 isomorphic copies of a given tree with m-edges.
In 1965, Kotzig [6] conjectured that the complete graph K2m+1, can be cyclically
decomposed into 2m + 1 copies of a given tree with m edges. To settle the above
two conjectures, in 1967, Rosa [9] introduced a hierarchical series of labeling called ρ,
σ, β and α-valuations. Later, Golomb [4] called β-valuation as graceful and now this is
the term most widely used.

A graceful labeling of a graph G with m edges and vertex set V is an injection
f : V (G) → {0, 1, 2, . . . ,m} with the property that the resulting edge labels are also
distinct where an edge incident with vertices u and v is assigned the label |f(u)−f(v)|.
A graph which admits a graceful labeling is called a graceful graph. In his classical
paper [9], Rosa proved the theorem that, if a tree T with m edges has a decomposition
into 2m+ 1 copies of T .

From Rosa’s theorem it follows that both Ringel and Kotzig’s conjectures are true if
every tree is graceful. This led to the birth of the popular Ringel-Kotzig-Rosa conjecture
popularly called the Graceful Tree Conjecture: “All trees are graceful”.

As the Graceful Tree Conjecture is a hard problem to settle, and the characterization of
graceful graphs are extremely hard to understand, different generalization on graceful
labeling were introduced and studied. One such generalization of graceful labeling is
a k-equitable labeling, which was introduced by Cahit [2] in the year 1990. In the
k-equitable labeling, the vertex and the edge labels are distributed as evenly as possible
and it is defined more precisely in the following way.

For a graph G(V,E) and for a positive integer k ≥ 2, a function
f : V (G) → {0, 1, 2, . . . , k − 1} is called a k-equitable labeling, if f and its induced
edge labeling function f ∗ : E(G) → {0, 1, 2, . . . , k − 1} defined by f ∗(e = uv) =

|f(u) − f(v)| satisfying the condition |vf (i) − vf (j)| ≤ 1 and |ef (i) − ef∗(j)| ≤ 1

respectively, for i, j, 0 ≤ i < j ≤ k − 1 where vf (i) and ef (i) denote the number of
vertices and the number of edges having the label i under f and f ∗ respectively.

Note that a graph with m edges, is graceful if and only if it is m+ 1 equitable. In 1990
Cahit [2] conjectured that every tree is k-equitable for any k ≥ 2. This conjecture is
equivalent to the celebrated Graceful Tree Conjecture when k is the number of vertices
of the tree.

Cahit [1] proved that every tree is 2-equitable. The 2-equitable labeling is called
popularly as cordial labeling. Speyer and Szaniszlo [11] proved that every tree is
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3-equitable. Szaniszlo [10] proved that every path is k-equitable and every star is
k-equitable. For an exhaustive survey on k-equitable graph refer the excellent dynamic
survey by Gallian [5].

In 2000 Niall Cairnie and Keith Edward [7] proved that the recognition of whether the
graph is k-equitable for k ≥ 2 is an NP-complete problem. The Cahit’s k-Equitable
Tree Conjecture and its relevance to the Graceful Tree Conjecture and the result that
the recognition of k equitable graph is NP-complete strongly motivated to understand
the structure of k equitable graphs. In this direction here in this paper we prove a
fundamental structural property of k-equitable trees that every tree is k-equitable.

2. MAIN RESULT

In this section we prove our main result in Theorem 2.1. As our main result uses the
Horse-Race Labeling Algorithm proposed by Cahit [1]. We present the Horse-Race
Labeling Algorithm for the completeness.

Horse-Race Labeling Algorithm

1. Choose v1 ∈ V (T ); set f(v1) = 0, VL = {v1}, i = 1, vL(0) = 1,
vL(1) = eL(1) = eL(0) = 0.

2. If V \VL = ϕ, stop. Otherwise, replace i by i+ 1.

3. Choose v ∈ V \VL adjacent to u ∈ VL, and let vi ∈ V .

If vL(1) > vL(0) put f(vi) = 0.

If vL(1) < vL(0) put f(vi) = 1.

If vL(1) = vL(0) and eL(1) > eL(0) put f(vi) = f(u).

If vL(1) = vL(0) and eL(1) < eL(0) put f(vi) = 1− f(u).

Replace VL by VL ∪ {vi}, update vL(j), eL(j), and go to Step 2.

Theorem 2.1. For each k ≥ 2, every tree is a subtree of a k-equitable tree.

Proof.
Step 1. Construction of a tree T ∗ containing a given arbitrary tree

T as its subtree

Consider an arbitrary tree T . Let |V (T )| = N . Consider the set
S = {y1, y2, . . . , y(k−2)(⌊N

2
⌋)} of new vertices. Then select r vertices,
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1 ≤ r ≤ N , say x1, x2, . . . , xr from the tree T . Now, for each xi, 1 ≤ i ≤ r,
choose si distinct vertices when k is odd while when k is even, choose si distinct
vertices where si is an even number. Let the chosen si vertices from the set S to be
yα1 , yα2 , . . . , yαsi

, where αj ∈ {1, 2, . . . , (k− 2)⌊N
2
⌋} with 1 ≤ si ≤ (k− 2)(⌊N

2
⌋) and

s1 + s2 + · · ·+ sr = (k − 2)(⌊N
2
⌋). Then join each xi, for i, 1 ≤ i ≤ r with its chosen

new vertices yα1 , yα2 , . . . , yαsi
, denote the resultant graph by T ∗. As xiyαj

, for each j,
1 ≤ j ≤ si is a distinct pendant edge in T ∗, the graph T ∗ is also a tree containing the
arbitrary tree T .

Step 2. Defining a k-equitable labeling of T ∗

Step 2.1. Labeling the vertices of T

Consider the given arbitrary tree T (which is a subtree) in the tree T ∗. Then, using the
Horse-Race Labeling Algorithm, obtain the 0-1 cordial labeling of the vertices of T .
Then relabel every vertex of T having the label 1 with the label k − 1.

Let V0(T ) denotes the set of all vertices of T having the label 0 and let Vk−1(T ) denotes
the set of all vertices of T having the label k−1. As the Horse-Race Labeling Algorithm
generates cordial labeling on T , we have

||V0(T )| − |Vk−1(T )|| ≤ 1 and (1)

||E0(T )| − |Ek−1(T )|| ≤ 1 (2)

where E0(T ) denotes the set of all edges of T having the label 0 and Ek−1(T ) denotes
the set of all edges of T having the label k − 1.

Step 2.2. Extending the labeling of T to T ∗

We extend the labeling of T to a k-equitable labeling of the tree T ∗ by assigning the
labels 1, 2, . . . , k − 2 to the vertices of S in T ∗.

Consider the set S of new vertices added to the tree T in T ∗ and let S1 be the subset of
vertices in S which are adjacent to the vertices of T labeled with 0, and let S2 be the
subset of vertices in S which are adjacent to the vertices of T labeled with k − 1. It is
clear that (S1, S2) is a partition of the set S.

Let S ′
1 be the set of all edges of T ∗ having one end in S1 and the other end in T with

label 0. Similarly, let S ′
2 be the set of all edges of T ∗ having one end in S2 and the

other end in T with label k − 1. To define a k-equitable labeling for T ∗, we will assign



Every Tree is a Subtree of a k-Equitable Tree for any k ≥ 2 5

⌊N
2
⌋ times each of the labels 1, 2, . . . , k − 2 to the vertices in the set S1 ∪ S2 = S. Let

|S1| = m and |S2| = n. We can write

m = a(k − 2) + b, where 0 ≤ b < k − 2 and (3)

n = c(k − 2) + d, where 0 ≤ d < k − 2. (4)

Claim 1: Either b+ d = 0 with b = 0 and d = 0 or b+ d = k − 2 with
b > 0, d > 0

We have m + n = |S1| + |S2| = |S| = (k − 2)
(⌊

N
2

⌋)
. From (3) and

(4) we have a(k − 2) + b + c(k − 2) + d = (k − 2)
(⌊

N
2

⌋)
. That is,

b + d = (k − 2)
(⌊

N
2

⌋
− (a+ c)

)
. Therefore, b + d is a multiple of k − 2. Since

b + d is a multiple of k − 2 and 0 ≤ b + d < 2(k − 2), we must have either
b + d = 0 or b + d = k − 2. If b + d = k − 2, then b ̸= 0. If b = 0, then d = k − 2,
but 0 ≤ d < k − 2, a contradiction. Also, if b + d = k − 2, then d ̸= 0. If d = 0,
then b = k − 2, but 0 ≤ b < k − 2, a contradiction. Therefore, b > 0 and d > 0 when
b+ d = k − 2. From (3) and (4), we have b ≥ 0 and d ≥ 0. Then, if b+ d = 0, implies
b = 0 = d. Hence the claim.

The assignment of the labels 1, 2, . . . , k − 2 to the vertices of S in T ∗ depends on the
cases b+ d = 0 with b = d = 0 or the case b+ d = k − 2 with b > 0 and d > 0.

Step 2.2.1. Labeling the vertices of S in T ∗ when b+ d = 0 with
b = d = 0

Since b = d = 0, we have from (3) and (4) m = a(k − 2),
n = c(k − 2)

Then identify a distinct subsets of S1 each subset containing k− 2 (unlabeled pendant)
vertices, and for each such subset having k− 2 unlabeled pendant vertices, respectively
assign the labels 1, 2, . . . , k − 2. Similarly, identify c distinct subsets of S2 each such
subset having k − 2 (unlabeled pendant) vertices. Then for each such subset having
k − 2 unlabeled pendant vertices, respectively assign the labels 1, 2, . . . , k − 2.

Let Vi(T
∗) denote the set of all vertices of T ∗ having the label i, for i, 0 ≤ i ≤ k − 1,

and Ei(T
∗) denote the set of all edges of T ∗ having the label i, for i, 0 ≤ i ≤ k − 1.

Then by the above labeling, we have

|Vi(T
∗)| = |Vj(T

∗)| for 1 ≤ i < j ≤ k − 2 (5)

|Ei(T
∗)| = |Ej(T

∗)| for 1 ≤ i < j ≤ k − 2 (6)
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As T is a subtree of T ∗ and the labels 0 and k− 1 are not assigned to any of the vertices
in S of T ∗.

|V0(T
∗)| = |V0(T )| and |Vk−1(T

∗)| = |Vk−1(T )| and

|E0(T
∗)| = |E0(T )| and |Ek−1(T

∗)| = |Ek−1(T )|

We have, from (1) and (2)

||V0(T )| − |Vk−1(T )|| ≤ 1 and ||E0(T )| − |Ek−1(T )|| ≤ 1

From (1), (2), (5) and (6), we have

||Vi(T
∗)| − |Vj(T

∗)|| ≤ 1

||Ei(T
∗)| − |Ej(T

∗)|| ≤ 1 for i, j, 0 ≤ i < j ≤ k − 1.

Thus, T ∗ is k-equitable.

Step 2.2.2. Labeling of the vertices of S in T ∗ when b+ d = k − 2

with b > 0 and d > 0,
From (3) and (4), we have m = a(k−2)+b, where 0 ≤ b < k−2 and n = c(k−2)+d,
where 0 ≤ d < k−2. m+n = (a+ c)(k−2)+(b+d). For the (a+ c)(k−2) vertices,
we label them as in the Step 2.2.1. For the remaining b + d vertices, we consider two
cases depending on the nature of k is either even or odd.

Case 1. k is odd
Then k − 2 is odd. As b + d = k − 2, we have b + d = odd. This would imply that
either b is odd and d is even or b is even and d is odd. Then to extend the k-equitable
labeling of T to T ∗, we further consider the following subcases.

Case 1.1. b is odd and d is even
Then we can write b = 2z + 1 for some z ∈ Z+. Then assign the b labels given in the
following set A to the b vertices of T ∗ in S1.

A =

{(
k − 1

2

)
− z,

(
k − 1

2

)
− (z − 1),

(
k − 1

2

)
− (z − 2), . . . ,(

k − 1

2

)
+ (z − 2),

(
k − 1

2

)
+ (z − 1),

(
k − 1

2

)
+ z

}
Then the induced edge labels of the pendant edges having one end vertex in S1 and the
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other end vertex with the label 0 in T contained in T ∗ are given in the following set A′.

A′ =

{(
k − 1

2

)
− z,

(
k − 1

2

)
− (z − 1),

(
k − 1

2

)
− (z − 2),

. . . ,

(
k − 1

2

)
+ (r − 2),

(
k − 1

2

)
+ (z − 1),

(
k − 1

2

)
+ z

}
Now assign the d labels given in the following set B to the d vertices of T ∗ in S2.

B = {1, 2, . . . , k − 3, k − 2}\A. That is,

B =

{
1, 2, 3, . . . ,

(
k − 1

2

)
− (z + 3),

(
k − 1

2

)
− (z + 2),(

k − 1

2

)
− (z + 1)

}
∪
{(

k − 1

2

)
+ (z + 1),

(
k − 1

2

)
+ (z + 2),(

k − 1

2

)
+ (z + 3), . . . , k − 4, k − 3, k − 2

}
Then the induced edge labels of the pendant edges having one end vertex in S2 and the
other end vertex with the label k − 1 in T , contained in T ∗ are given in the following
set B′.

B′ =

{
k − 2, k − 3, k − 4, . . . ,

(
k − 1

2

)
+ (z + 3),

(
k − 1

2

)
+ (z + 2),(

k − 1

2

)
+ (z + 1)

}
∪
{(

k − 1

2

)
− (z + 1),

(
k − 1

2

)
− (z + 2),(

k − 1

2

)
− (z + 3), . . . , 3, 2, 1

}
From the above it is clear that the vertex labels assigned to the b vertices in A and d

vertices in B are distinct. Since A ∩ B = ϕ and A ∪ B = {1, 2, . . . , k − 3, k − 2}.
Similarly the induced edge labels in the set A′ and B′ are distinct. Since A′ ∩ B′ = ϕ

and A′ ∪B′ = {1, 2, . . . , k − 3, k − 2}.
From the above labeling of T ∗, we have

|Vi(T
∗)| = |Vj(T

∗)|, for 1 ≤ i < j ≤ k − 2 and (7)

|Ei(T
∗)| = |Ej(T

∗)|, for 1 ≤ i < j ≤ k − 2. (8)

We have, from (1) and (2)

||V0(T )| − |Vk−1(T )|| ≤ 1 and

||E0(T )| − |Ek−1(T )|| ≤ 1



8 Dr. N. Shanmugapriya

From (1), (2), (7) and (8), we have ||Vi(T
∗)| − |Vj(T

∗)|| ≤ 1 and
||Ei(T

∗)| − |Ej(T
∗)|| ≤ 1, for all i, j, 0 ≤ i < j ≤ k − 1. Thus, T ∗ is k-equitable tree

containing the given arbitrary tree T .

Case 1.2. b is even and d is odd

Then we can write d = 2w + 1, where w is a positive integer. Then assign the d labels
belonging to the set C to the d vertices of the remaining (b+ d) vertices.

C =

{(
k − 1

2

)
− w,

(
k − 1

2

)
− (w − 1),

(
k − 1

2

)
− (w − 2), . . . ,(

k − 1

2

)
+ (w − 2),

(
k − 1

2

)
+ (w − 1),

(
k − 1

2

)
+ r

}
Then the induced edge labels of the pendant edges having an end vertex in S2 and the
other end vertex having the label k − 1 in T contained in T ∗ are given in the following
set C ′.

C ′ =

{(
k − 1

2

)
+ w,

(
k − 1

2

)
+ (w − 1),

(
k − 1

2

)
+ (w − 2), . . . ,(

k − 1

2

)
− (w − 2),

(
k − 1

2

)
− (w − 1),

(
k − 1

2

)
− w

}
Assign the b labels belonging to the set D to the b vertices of the remaining (b + d)

vertices.

D = {1, 2, . . . , k − 3, k − 2}\C. That is,

D =

{
1, 2, 3, . . . ,

(
k − 1

2

)
− (w + 3),

(
k − 1

2

)
− (w + 2),(

k − 1

2

)
− (w + 1)

}
∪
{(

k − 1

2

)
+ (w + 1),

(
k − 1

2

)
+ (w + 2),(

k − 1

2

)
+ (w + 3), . . . , k − 4, k − 3, k − 2

}
Then the induced edge labels of the pendant edges having an end vertex in S2 and the
other end vertex having the label 0 in T , contained in T ∗, are given in the following set
D′.

D′ =

{
1, 2, 3, . . . ,

(
k − 1

2

)
− (w + 3),

(
k − 1

2

)
− (w + 2),(

k − 1

2

)
− (w + 1)

}
∪
{(

k − 1

2

)
+ (w + 1),

(
k − 1

2

)
+ (w + 2),(

k − 1

2

)
+ (w + 3), . . . , k − 4, k − 3, k − 2

}
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We observe from the label sets C and D, the vertex labels assigned to the d

vertices having the labels in the set C and the vertex labels assigned to the b

vertices having the labels in the set D are distinct, since C ∩ D = ϕ and
C ∪ D = {1, 2, . . . , k − 2}. Similarly the induced edge labels in the set C ′ and D′

are distinct, since C ′ ∩D′ = ϕ and C ′ ∪D′ = {1, 2, . . . , k − 2}.

From the above labeling of T ∗, we have

|Vi(T
∗)| = |Vj(T

∗)| for 1 ≤ i < j ≤ k − 2 and (9)

|Ei(T
∗)| = |Ej(T

∗)| for 1 ≤ i < j ≤ k − 2. (10)

We have, from (1) and (2)

||V0(T )| − |Vk−1(T )|| ≤ 1 and

||E0(T )| − |Ek−1(T )|| ≤ 1

From (1), (2), (9) and (10), we have ||Vi(T
∗)| − |Vj(T

∗)|| ≤ 1 and
||Ei(T

∗)| − |Ej(T
∗)|| ≤ 1, for all i, j, 0 ≤ i < j ≤ k − 1. Thus, T ∗ is k-equitable

containing the given arbitrary tree T .

Case 2. When k is even,

Then k − 2 is even. As b+ d = k − 2, b+ d is even. This would imply that either both
b and d are even or both b and d are odd. By the construction of T ∗, when k is even m

and n are chosen to be even. Therefore from the equation (3) we have m−a(k−2) = b

is also even. Similarly from the equation (4) we have n − c(k − 2) = d is also even.
Thus both b and d cannot be odd. Consequently we consider only the case both b and d

are even. Let b = 2h, h ∈ Z+.

Now assign the b labels belonging to the set L to the b vertices of the remaining (b+ d)

vertices.

L =

{(
k − 2

2

)
− (h− 1),

(
k − 2

2

)
− (h− 2),

(
k − 2

2

)
− (h− 3),

. . . ,

(
k − 2

2

)
+ (h− 2),

(
k − 2

2

)
+ (h− 1),

(
k − 2

2

)
+ h

}
Then the induced edge labels of the pendant edges having one end vertex in S2 and the
other end vertex having the label 0 in T are given in the following set L′.

L′ =

{(
k − 2

2

)
− (h− 1),

(
k − 2

2

)
− (h− 2),

(
k − 2

2

)
− (h− 3),

. . . ,

(
k − 2

2

)
+ (h− 2),

(
k − 2

2

)
+ (h− 1),

(
k − 2

2

)
+ h

}
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Assign the d labels belonging to the set M to the d vertices of the remaining (b + d)

vertices.

M = {1, 2, . . . , k − 2}\L. That is,

M =

{
1, 2, 3, . . . ,

(
k − 2

2

)
− (h+ 2),

(
k − 2

2

)
− (h+ 1),

(
k − 2

2

)
− h

}
∪
{(

k − 2

2

)
+ (h+ 3),

(
k − 2

2

)
+ (h+ 2),(

k − 2

2

)
+ (h+ 1), . . . , (k − 4), (k − 3), (k − 2)

}
Then the induced edge labels of the pendant edges having one end vertex in F (which
is a 1-degree vertex) and the other end vertex having the label k − 1 in T are given in
the following set M ′.

M ′ =

{
k − 2, k − 3, k − 4, . . . ,

(
k

2

)
+ (h+ 2),

k

2
+ (h+ 1),

k

2
+ r

}
∪
{(

k

2

)
− (h+ 3),

(
k

2

)
− (h+ 2),

(
k

2

)
− (h+ 1), . . . , 3, 2, 1

}
We observe from the set L and M , the vertex labels assigned to b vertices in the set
L and the vertex labels assigned to d vertices in M are distinct. Since L ∪ M =

{1, 2, . . . , k − 2} and L ∩M = ϕ. Similarly the induced edge labels in the set L′ and
M ′ are distinct, since L′ ∩M ′ = ϕ and L′ ∪M ′ = {1, 2, . . . , k − 2}.

From the above labeling of T ∗, we have

|Vi(T
∗)| = |Vj(T

∗)|, for 1 ≤ i < j ≤ k − 2 and (11)

|Ei(T
∗)| = |Ej(T

∗)|, for 1 ≤ i < j ≤ k − 2. (12)

We have, from (1) and (2)

||V0(T )| − |Vk−1(T )|| ≤ 1 and

||E0(T )| − |Ek−1(T )|| ≤ 1

From (1), (2), (11) and (12), for T ∗, we have

||Vi(T
∗)| − |Vj(T

∗)|| ≤ 1 and ||Ei(T
∗)| − |Ej(T

∗)|| ≤ 1

for all i, j, 0 ≤ i < j ≤ k − 1. Thus, T ∗ is k-equitable containing the given arbitrary
tree T .

Hence the theorem.
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Illustration:

We illustrate below the process of obtaining a super k-equitable tree T ∗ for a given tree
T .

Consider the tree T given in Figure 1. Then its supertree T ∗ constructed as given in
the proof of Theorem 2.1 is given in Figure 2. In Figure 3 the cordial labeling of T
contained in T ∗ is given based on the Horse-Race Labeling Algorithm. In Figure 4 the
label 1 is changed to the label 8 (= k−1). In Figure 5 the 9-equitable labeling is defined
for the supertree T ∗ (containing the given tree T ) as given in the proof of Theorem 2.1.

Figure 1: The tree T
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Figure 2: The tree T ∗
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0 1

0 1 0 0 1 0

01

10 0 1 0 1

1 11

0

1 0 1 0 1 0 1

Figure 3: 0-1 labeling of the tree T contained in T ∗
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0 8

0 8 0 0 8 0

08

80 0 8 0 8

8 88

0

8 0 8 0 8 0 8

Figure 4: Partially labeled T ∗
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0 8

0 8 0 0 8 0

08

80 0 8 0 8

8 88

0

0 8 0 8 0 8 0 8

1

2

3

4

76
5

1 2
3

4

5

6

7

1

2
3

4

5

6

7

1

2

3 4
5 6 7 1 2 3 4 5 7 16

2 3 4 5 6 7 1 2 3

4 5 6 7

1

2

3

4

5

7

5 6 7

7 1 2 3 4

6

1 2 3 4

1

2

3

4

6

5

5 6 7 1 2

3 4 5 6 7 1 2 3 4 5 6 71 2 6 7 3 4 5

451 3762

Figure 5: 9-equitable labeled tree T ∗ containing the given tree T
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