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1. Introduction 

Fuzzy set theory was proposed by Zadeh, Lotfi A. [10] in 1965 as an extension of the 

classical notion of a set (Zadeh, 1965). With the proposed methodology, Zadeh 

introduced a mathematical method with which decision-making using fuzzy 

descriptions of some information becomes possible. The basis of this theory is the 

fuzzy set, which is a set that does not have clearly defined limits and can contain 

elements only at some degree; in other words, elements can have a certain degree of 

membership. Hence, suitable functions are used namely, membership functions that 

determine the membership degree of each element in a fuzzy set. If we consider an 

input variable x with a field of definition S, the fuzzy set A in S is defined as: If 𝐴 be 

the subset of universe of discourse 𝑖. 𝑒. 𝑋 = {𝑥1, … … , 𝑥𝑛} then, 𝐴 is defined as, 

𝐴 = {𝑥𝑖/𝜇𝐴(𝑥𝑖): 𝑖 = 1,2, … … … … , 𝑛}. 

Where 𝜇𝐴(𝑥𝑖) is a membership function and having the following properties: (i) If 

𝜇𝐴(𝑥𝑖) = 0, 𝑥𝑖 does not belong to 𝐴 and there is no ambiguity. (ii) If 𝜇𝐴(𝑥𝑖) = 1, 𝑥𝑖 

belong to 𝐴 and there is no ambiguity. (iii) If 𝜇𝐴(𝑥𝑖) = 0.5, there is maximum 

ambiguity whether 𝑥𝑖 belong to 𝐴 or not. 
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Intuitionistic fuzzy sets are sets whose elements have membership grades and non-

membership grades. The intuitionistic fuzzy set generalizes fuzzy set, since the 

indicator function of fuzzy set is a special case of the membership function and non-

membership function of intuitionistic fuzzy set. 

It is an uncertainty based model proposed by Atanassov, K. T. [1, 2] in 1986, which 

extends the notion of fuzzy sets by relaxing the constraint in fuzzy sets that the non-

membership value is one’s complement of the membership value of every element. 

According to him, if 𝐹 be a fixed set then an intuitionistic fuzzy set 𝑆 in 𝐹 is an object 

having the form 

𝑆 = {< 𝑥, 𝜇𝑆(𝑥), 𝜈𝑆(𝑥) >/𝑥 ∈ 𝐹}. 

Where the function 𝜇𝑆(𝑥) and 𝜈𝑆(𝑥) define the degree of membership and degree of 

non-membership of the element 𝑥 ∈ 𝑆 to 𝑆 ⊂ 𝐹 respectively. The function 𝜇𝑆(𝑥) and 

𝜈𝑆(𝑥) satisfy the following condition. 

(∀ 𝑥 ∈ 𝐹) (0 ≤ 𝜇𝑆(𝑥) + 𝜈𝑆(𝑥) ≤ 1). 

Obviously, fuzzy set has the form {< 𝑥, 𝜇𝑆(𝑥), 1 − 𝜇𝑆(𝑥) >/𝑥 ∈ 𝐹}. 

A measure of fuzziness 𝑓(𝜇𝑆(𝑥), 𝜈𝑆(𝑥)) is an Intuitionistic fuzzy set should have 

atleast the following conditions: 

(𝐶1) It should be continuous in this range of  

 (0 ≤ 𝜇𝑆(𝑥𝑖) + 𝜈𝑆(𝑥𝑖) ≤ 1), (𝑖 = 1, … … , 𝑛). 

(𝐶2)  It should be zero when 𝜇𝑆(𝑥𝑖) = 0 and 𝜈𝑆(𝑥𝑖) = 0. 

(𝐶3)  It should be not changed when any of 𝜇𝑆(𝑥𝑖) is changed into 𝜈𝑆(𝑥𝑖). 

(𝐶4)  It should be defined for all 𝜇𝑆(𝑥𝑖) and 𝜈𝑆(𝑥𝑖) (𝑖 = 1, … … , 𝑛) in the range of  

 (0 ≤ 𝜇𝑆(𝑥𝑖) + 𝜈𝑆(𝑥𝑖) ≤ 1), (𝑖 = 1, … … , 𝑛). 

(𝐶5)  It should be maximum when 𝜇𝑆(𝑥𝑖) =
1

2
 and 𝜈𝑆(𝑥𝑖) =

1

2
 (𝑖 = 1, … … , 𝑛). 

(𝐶6)  It should be increasing function of 𝜇𝑆(𝑥𝑖) when 0 ≤ 𝜇𝑆(𝑥𝑖) ≤
1

2
 and 

decreasing function of 𝜇𝑆(𝑥𝑖) when 
1

2
≤ 𝜇𝑆(𝑥𝑖) ≤ 1 and other variable are 

kept fixed. It should be decreasing function of 𝜈𝑆(𝑥𝑖) when 0 ≤ 𝜈𝑆(𝑥𝑖) ≤
1

2
 

and increasing function of 𝜈𝑆(𝑥𝑖) when 
1

2
≤ 𝜈𝑆(𝑥𝑖) ≤ 1 and other variable are 

kept fixed. 

(𝐶7)  It should be concave function of 𝜇𝑆(𝑥𝑖), when 𝜈𝑆(𝑥𝑖) set as a constant. 

 

If 𝐴 and 𝐵 are the two intuitionistic fuzzy sets. Then Shannon [6] measure of 

information in intuitionistic fuzzy environment is given by 

𝑆(𝐴) − ∑ [𝜇
𝐴

(𝑥𝑖) ln 𝜇
𝐴

(𝑥𝑖) + 𝜈𝐴(𝑥𝑖)ln 𝜈𝐴(𝑥𝑖)]𝑛
𝑖=1  (1.1) 
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and by the use of Shennon information measure, the concept of information radius in 

intuitionistic fuzzy environment is given by 

𝑅(𝐴, 𝐵) = 𝑺 (
𝐴+𝐵

2
) − 2−1[𝑺(𝐴) + 𝑺(𝐵)] (1.2) 

But, the concept of information radius was given by Kapur [5] in classical 

environment. The above equation (1.2) is known as information radius in intuitionistic 

fuzzy environment (Sibson [7]) or Jensen-Shannon directed divergence measure 

(Burbea and Rao [4]) in intuitionistic fuzzy environment. In the next section, we shall 

study the new information radius in intuitionistic fuzzy environment corresponding to 

Verma [8, 9] information measure. 

 

 

2. Our Results 

2.1 INFORMATION RADIUS CONNECTED WITH VERMA [8, 9] i.e. 

HYBRID BURG [3] INFORMATION MEASURE 

Verma [8, 9] i.e. hybrid Burg [3] intuitionistic fuzzy information measure, if avoiding 

the constant term, is 

𝑉𝑎(𝐴) = ∑ [ln (1 + 𝑎𝜇
𝐴

(𝑥𝑖)) + ln(1 + 𝑎𝜈𝐴(𝑥𝑖))]𝑛
𝑖=1 − ∑ [ln 𝜇

𝐴
(𝑥𝑖) + ln 𝜈𝐴(𝑥𝑖)]𝑛

𝑖=1 , 

𝑎 > 0  (2.1.1) 

Now, if 𝐴 and 𝐵 are the two intuitionistic fuzzy sets and 𝑉𝑎(𝐴) and 𝑉𝑎(𝐵) are their 

intuitionistic fuzzy entropies, then the probabilistic intuitionistic fuzzy information 

radius 𝑅(𝐴, 𝐵) is defined as 

𝑅(𝐴, 𝐵) = 𝑉𝑎 (
𝐴+𝐵

2
) − 2−1[𝑉𝑎(𝐴) + 𝑉𝑎(𝐵)] (2.1.2) 

Using (2.1.1), equation (2.1.2) gives the following result 

𝑅(𝐴, 𝐵) = ∑ [ln (1 + 𝑎𝜇𝐴+𝐵

2

(𝑥𝑖)) + ln (1 + 𝑎𝜈𝐴+𝐵

2

(𝑥𝑖))]

𝑛

𝑖=1

− 2−1 ∑ [ln (1 + 𝑎𝜇
𝐴

(𝑥𝑖)) +

𝑛

𝑖=1

 

ln(1 + 𝑎𝜈𝐴(𝑥𝑖)) + ln(1 + 𝑎𝜇𝐵(𝑥𝑖)) + ln(1 + 𝑎𝜈𝐵(𝑥𝑖))] 

− ∑ [ln 𝜇𝐴+𝐵

2

(𝑥𝑖) + ln 𝜈𝐴+𝐵

2

(𝑥𝑖)]

𝑛

𝑖=1

+ 2−1 ∑[ln 𝜇𝐴(𝑥𝑖) + ln 𝜈𝐴(𝑥𝑖) + ln 𝜇𝐵(𝑥𝑖) + ln 𝜈𝐵(𝑥𝑖)]

𝑛

𝑖=1

= 2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎𝜇𝐴+𝐵

2

(𝑥𝑖)) + 𝜈𝐴+𝐵

2

ln (1 + 𝑎𝜈𝐴+𝐵

2

(𝑥𝑖))]

𝑛

𝑖=1

 



4 Rohit Kumar Verma 

 

−2−1 ∑ [𝜇𝐴+𝐵

2

ln (1 + 𝑎𝜇
𝐴

(𝑥𝑖)) + 𝜈𝐴+𝐵

2

ln(1 + 𝑎𝜈𝐴(𝑥𝑖))]]

𝑛

𝑖=1

 

+2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎𝜇𝐴+𝐵

2

(𝑥𝑖)) + 𝜈𝐴+𝐵

2

ln (1 + 𝑎𝜈𝐴+𝐵

2

(𝑥𝑖))]

𝑛

𝑖=1

 

−2−1 ∑ [𝜇𝐴+𝐵

2

ln(1 + 𝑎𝜇𝐵(𝑥𝑖)) + 𝜈𝐴+𝐵

2

ln(1 + 𝑎𝜈𝐵(𝑥𝑖))]

𝑛

𝑖=1

 

− ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln 𝜇𝐴+𝐵

2

(𝑥𝑖) + 𝜈𝐴+𝐵

2

(𝑥𝑖)ln 𝜈𝐴+𝐵

2

(𝑥𝑖) + 𝜇𝐴+𝐵

2

ln 𝜇𝐴+𝐵

2

(𝑥𝑖) + 𝜈𝐴+𝐵

2

(𝑥𝑖) ln 𝜈𝐴+𝐵

2

(𝑥𝑖)]

𝑛

𝑖=1

+ 2−1 ∑ [𝜇𝐴+𝐵

2

ln 𝜇
𝐴

(𝑥𝑖) + 𝜈𝐴+𝐵

2

(𝑥𝑖) ln 𝜈𝐴(𝑥𝑖)

𝑛

𝑖=1

+ 𝜇𝐴+𝐵

2

ln 𝜇
𝐵

(𝑥𝑖) + 𝜈𝐴+𝐵

2

(𝑥𝑖) ln 𝜈𝐵(𝑥𝑖)] 

= −2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln (
1 + 𝑎𝜇

𝐴
(𝑥𝑖)

1 + 𝑎𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

ln (
1 + 𝑎𝜈𝐴(𝑥𝑖)

1 + 𝑎𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

 

+2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖) ln (
𝜇

𝐴
(𝑥𝑖)

𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

ln (
𝜈𝐴(𝑥𝑖)

𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

 

−2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖) ln (
1 + 𝑎𝜇

𝐵
(𝑥𝑖)

1 + 𝑎𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

ln (
1 + 𝑎𝜈𝐵(𝑥𝑖)

1 + 𝑎𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

 

+2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖) ln (
𝜇

𝐵
(𝑥𝑖)

𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

ln (
𝜈𝐵(𝑥𝑖)

𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

 

Ofcourse, without loss of generality, we can reduce the first two terms 

= −2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎.
𝜇

𝐴
(𝑥𝑖)

𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎.
𝜈𝐴(𝑥𝑖)

𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

 

+2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖) ln (
𝜇

𝐴
(𝑥𝑖)

𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

(𝑥𝑖) ln (
𝜈𝐴(𝑥𝑖)

𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1
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−2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎.
𝜇

𝐵
(𝑥𝑖)

𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎.
𝜈𝐵(𝑥𝑖)

𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

 

+2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖) ln (
𝜇𝐵

(𝑥𝑖)

𝜇𝐴+𝐵
2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

(𝑥𝑖) ln (
𝜈𝐵(𝑥𝑖)

𝜇𝐴+𝐵
2

(𝑥𝑖)
)]𝑛

𝑖=1 . 

Thus, we achieve the result 𝑅(𝐴, 𝐵) =
1

2
𝐷𝑎 (𝐴,

𝐴+𝐵

2
) +

1

2
𝐷𝑎 (𝐵,

𝐴+𝐵

2
). 

Where, 𝐷𝑎(𝐴, 𝐵) = − ∑ [𝜇
𝐵

(𝑥𝑖) ln (1 + 𝑎.
𝜇𝐴

(𝑥𝑖)

𝜇𝐵
(𝑥𝑖)

) + 𝜈𝐵(𝑥𝑖) ln (1 + 𝑎.
𝜈𝐴(𝑥𝑖)

𝜈𝐵(𝑥𝑖)
)]𝑛

𝑖=1  

+ ∑ [𝜇
𝐵

(𝑥𝑖) ln (
𝜇𝐴

(𝑥𝑖)

𝜇𝐵
(𝑥𝑖)

) + 𝜈𝐵(𝑥𝑖) ln (
𝜈𝐴(𝑥𝑖)

𝜈𝐵(𝑥𝑖)
)]𝑛

𝑖=1 . (2.1.3) 

is the intuitionistic fuzzy directed divergence corresponding to Verma [8, 9] 

information measure. 

 

2.2 INFORMATION RADIUS CONNECTED WITH MODIFIED VERMA [8, 

9] INFORMATION MEASURE 

Modified Verma [8, 9] i.e. hybrid Shannon [6] intuitionistic fuzzy information 

measure, if avoiding the constant term, is 

𝑉𝑎(𝐴) = ∑ [ln (1 + 𝑎𝜇
𝐴

(𝑥𝑖)) + ln(1 + 𝑎𝜈𝐴(𝑥𝑖))]𝑛
𝑖=1 − ∑ [𝜇

𝐴
(𝑥𝑖) ln 𝜇

𝐴
(𝑥𝑖) +𝑛

𝑖=1

𝜈𝐴(𝑥𝑖) ln 𝜈𝐴(𝑥𝑖)], 

 𝑎 > 0  (2.2.1) 

Now, if 𝐴 and 𝐵 are the two intuitionistic fuzzy sets and 𝑉𝑎(𝐴) and 𝑉𝑎(𝐵) are their 

intuitionistic fuzzy entropies, then the probabilistic intuitionistic fuzzy information 

radius 𝑅(𝐴, 𝐵) is defined as 

𝑅(𝐴, 𝐵) = 𝑉𝑎 (
𝐴+𝐵

2
) − 2−1[𝑉𝑎(𝐴) + 𝑉𝑎(𝐵)] (2.2.2) 

Using (2.2.1), equation (2.2.2) gives the following result 

𝑅(𝐴, 𝐵) = ∑ [ln (1 + 𝑎𝜇𝐴+𝐵

2

(𝑥𝑖)) + ln (1 + 𝑎𝜈𝐴+𝐵

2

(𝑥𝑖))]

𝑛

𝑖=1

− 2−1 ∑[ln(1 + 𝑎𝜇𝐴(𝑥𝑖)) +

𝑛

𝑖=1

ln(1 + 𝑎𝜈𝐴(𝑥𝑖))

+ ln(1 + 𝑎𝜇𝐵(𝑥𝑖)) + ln(1 + 𝑎𝜈𝐵(𝑥𝑖))] 
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− ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖) ln 𝜇𝐴+𝐵

2

(𝑥𝑖) + 𝜈𝐴+𝐵

2

(𝑥𝑖) ln 𝜈𝐴+𝐵

2

(𝑥𝑖)]

𝑛

𝑖=1

+ 2−1 ∑[𝜇
𝐴

(𝑥𝑖)ln 𝜇
𝐴

(𝑥𝑖) + 𝜈𝐴(𝑥𝑖)

𝑛

𝑖=1

ln 𝜈𝐴(𝑥𝑖)

+ 𝜇
𝐵

(𝑥𝑖)ln 𝜇
𝐵

(𝑥𝑖) + 𝜈𝐵(𝑥𝑖)ln 𝜈𝐵(𝑥𝑖)] 

= 2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎𝜇𝐴+𝐵

2

(𝑥𝑖)) + 𝜈𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎𝜈𝐴+𝐵

2

(𝑥𝑖))]

𝑛

𝑖=1

 

−2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln(1 + 𝑎𝜇𝐴(𝑥𝑖)) + 𝜈𝐴+𝐵

2

(𝑥𝑖) ln(1 + 𝑎𝜈𝐴(𝑥𝑖))]

𝑛

𝑖=1

 

+2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎𝜇𝐴+𝐵

2

(𝑥𝑖)) + 𝜈𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎𝜈𝐴+𝐵

2

(𝑥𝑖))]

𝑛

𝑖=1

 

−2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln(1 + 𝑎𝜇𝐵(𝑥𝑖)) + 𝜈𝐴+𝐵

2

(𝑥𝑖) ln(1 + 𝑎𝜈𝐵(𝑥𝑖))]

𝑛

𝑖=1

 

−2−1 ∑ [𝜇
𝐴

(𝑥𝑖) ln 𝜇𝐴+𝐵

2

(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) ln 𝜈𝐴+𝐵

2

(𝑥𝑖)

𝑛

𝑖=1

+ 𝜇
𝐵

(𝑥𝑖) ln 𝜇𝐴+𝐵

2

(𝑥𝑖) + 𝜈𝐵(𝑥𝑖) ln 𝜈𝐴+𝐵

2

(𝑥𝑖)]

+ 2−1 ∑ [𝜇
𝐴

(𝑥𝑖)ln 𝜇
𝐴

(𝑥𝑖)

𝑛

𝑖=1

+ 𝜈𝐴(𝑥𝑖) ln 𝜈𝐴(𝑥𝑖) + 𝜇
𝐵

(𝑥𝑖)ln 𝜇
𝐵

(𝑥𝑖) + 𝜈𝐵(𝑥𝑖)ln 𝜈𝐵(𝑥𝑖)]] 

= −2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln (
1 + 𝑎𝜇𝐴(𝑥𝑖)

1 + 𝑎𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

(𝑥𝑖)ln (
1 + 𝑎𝜈𝐴(𝑥𝑖)

1 + 𝑎𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

 

−2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln (
1 + 𝑎𝜇𝐵(𝑥𝑖)

1 + 𝑎𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

(𝑥𝑖)ln (
1 + 𝑎𝜈𝐵(𝑥𝑖)

1 + 𝑎𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

 

+2−1 ∑ [𝜇
𝐴

(𝑥𝑖) ln (
𝜇

𝐴
(𝑥𝑖)

𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴(𝑥𝑖) ln (

𝜈𝐴(𝑥𝑖)

𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

+ 2−1 ∑ [𝜇
𝐵

(𝑥𝑖) ln (
𝜇

𝐵
(𝑥𝑖)

𝜇𝐴+𝐵

2

(𝑥𝑖)
)

𝑛

𝑖=1
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𝜇
𝐵

(𝑥𝑖) ln (
𝜇

𝐵
(𝑥𝑖)

𝜇𝐴+𝐵

2

(𝑥𝑖)
)] 

Ofcourse, without loss of generality, we can reduce the first two terms 

= −2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎.
𝜇

𝐴
(𝑥𝑖)

𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎.
𝜈𝐴(𝑥𝑖)

𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

 

+2−1 ∑ [𝜇
𝐴

(𝑥𝑖) ln (
𝜇

𝐴
(𝑥𝑖)

𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴(𝑥𝑖) ln (

𝜈𝐴(𝑥𝑖)

𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

 

−2−1 ∑ [𝜇𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎.
𝜇

𝐵
(𝑥𝑖)

𝜇𝐴+𝐵

2

(𝑥𝑖)
) + 𝜈𝐴+𝐵

2

(𝑥𝑖)ln (1 + 𝑎.
𝜈𝐵(𝑥𝑖)

𝜈𝐴+𝐵

2

(𝑥𝑖)
)]

𝑛

𝑖=1

 

+2−1 ∑ [𝜇
𝐵

(𝑥𝑖) ln (
𝜇𝐵

(𝑥𝑖)

𝜇𝐴+𝐵
2

(𝑥𝑖)
) + 𝜈𝐵(𝑥𝑖) ln (

𝜈𝐵(𝑥𝑖)

𝜇𝐴+𝐵
2

(𝑥𝑖)
)]𝑛

𝑖=1 . 

Thus, we achieve the result 𝑅(𝐴, 𝐵) =
1

2
𝐷𝑎 (𝐴,

𝐴+𝐵

2
) +

1

2
𝐷𝑎 (𝐵,

𝐴+𝐵

2
). 

Where 𝐷𝑎(𝐴, 𝐵) = − ∑ [𝜇
𝐵

(𝑥𝑖) ln (1 + 𝑎.
𝜇𝐴

(𝑥𝑖)

𝜇𝐵
(𝑥𝑖)

) + 𝜈𝐵(𝑥𝑖) ln (1 + 𝑎.
𝜈𝐴(𝑥𝑖)

𝜈𝐵(𝑥𝑖)
)]𝑛

𝑖=1  

+ ∑ [𝜇
𝐴

(𝑥𝑖) ln (
𝜇𝐴

(𝑥𝑖)

𝜇𝐵
(𝑥𝑖)

) + 𝜈𝐴(𝑥𝑖) ln (
𝜈𝐴(𝑥𝑖)

𝜈𝐵(𝑥𝑖)
)]𝑛

𝑖=1  (2.2.3) 

is the intuitionistic fuzzy directed divergence corresponding to modified Verma [8, 9] 

information measure. Note that, (2.1.3) and (2.2.3) are the convex functions. Thus we 

have the following properties: (i) 𝐷(𝐴, 𝐵) ≥ 0, (ii) 𝐷(𝐴, 𝐵) = 0 iff 𝜇𝐴(𝑥𝑖) = 𝜇𝐵(𝑥𝑖) 

or 𝜈𝐴(𝑥𝑖) = 𝜈𝐵(𝑥𝑖) ∀𝑖 and (iii) 𝐷(𝐴, 𝐵) is a convex function of 𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖), 𝜈𝐴(𝑥𝑖) 

and 𝜈𝐵(𝑥𝑖) ∀𝑖. Hence, intuitionistic fuzzy directed divergence 𝐷(𝐴, 𝐵) introduced in 

(2.1.3) and(2.2.3) are the valid measure of divergence. Also, the measure 𝑅(𝐴, 𝐵) 

satisfies the following properties: (i) 𝑅(𝐴, 𝐵) ≥ 0, (ii) 𝑅(𝐴, 𝐵) = 0 iff 𝜇𝐴(𝑥𝑖) =
𝜇𝐵(𝑥𝑖) or 𝜈𝐴(𝑥𝑖) = 𝜈𝐵(𝑥𝑖) ∀𝑖 and (iii) 𝑅(𝐴, 𝐵), being the sum of intuitionistic fuzzy 

directed divergence is convex and (iv) 𝑅(𝐴, 𝐵) is symmetric in the sense that 

𝑅(𝐴, 𝐵) = 𝑅(𝐵, 𝐴). Thus the intuitionistic fuzzy R-divergence 𝑅(𝐴, 𝐵) is a valid 

measure of divergence. 

 

Conclusion 

In the above discussion, we introduce the new measures of information radius and it 

has great applications in bioinformatics and genome comparison, in protein surface 

comparison, in the social sciences, in the quantitative study of history, fire 

experiments and in machine learning. 
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