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Abstract 
 

One of the classic problems in the research of nonlinear dynamics has been the 
diode resonator. By making a collection of previous work with the driven 
diode resonator, we have investigated origins of period doubling and chaotic 
behaviour. By using a model of the diode that includes the forward bias 
voltage, reverse recovery time, and junction capacitance, the nonlinear 
behaviour of the circuit is simulated by Multisim. Our work establishes that 
the nonlinearities of the reverse recovery time must also be considered for a 
complete understanding of period doubling route to chaos in this circuit. In 
addition to this comparative investigation, we present our contribution to 
referred implementation. A new high amplitude oscillation is observed at 
specific driving amplitude, and the circuit led to a non-periodic mode of 
operation with rich chaotic content at large driving signal amplitudes. 
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Introduction 
Simple nonlinear electrical resonators have proven to be a valuable means to 
investigate the universal features of nonlinear dynamical systems both theoretically 
and experimentally. Most probably, the diode resonator [1- 3] consisting of a resistor, 
an inductor, and a varactor diode driven by a periodic signal source was the first 
chaotic electronic circuit that was extensively studied. It is the simplest chaotic non-
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autonomous circuit that shows period doubling and chaos as a function of sinusoidal 
driving amplitude and frequency. The varactor diode function both as a nonlinear 
resistor and a nonlinear charge storage device, and the resulting circuit is a nonlinear 
resonator with complex dynamics. The various causes of nonlinearities that bifurcates 
the circuit into period doubling or chaos have also been reported [4- 6]. The driven 
RL varactor was shown to follow a well defined route to chaos in good agreement 
with the predictions of theory as in iterated and unimodel maps [7-11]. We must have 
a clear understanding about the physical conditions present in the nonlinear system 
that leads to a simple model suitable for mathematical modelling. The previous work 
on the diode resonator contributes the nonlinearity put-in by the voltage-dependent 
capacitance of the varactor for period doubling and chaotic behaviour. However, Hunt 
commented that [12] another property of the diode, namely, the reverse recovery time 
as the parameter responsible for the nonlinear behaviour. We establish that both 
factors are relevant for the diode resonator to exhibit chaotic behaviour. We believe 
that the capacitance variation of the varactor is unimportant with regard to the salient 
features of the response. It is assumed that the varactor diode will behave as an ideal 
diode with the following characteristics; (i) the diode will conduct only if the external 
forward bias voltage exceeds a finite forward bias voltage Vf , and the voltage drop 
across the diode remains at Vf during its conduction period (ii) the diode doesn’t 
conduct if the external voltage is less than Vf, and it acts as a capacitor with a fixed 
capacitance value C (iii) when the diode is switched abruptly from on to off state, it 
does not turn off immediately, but continues to conduct for a time interval equal to the 
reverse recovery time τrr. 
 The paper is organized as follows. In the next section, the topology of the R-L 
Varactor is presented and an idealized mathematical model is derived from the circuit. 
In section 3, we briefly outline the nonlinear behaviour of the storage time. Multisim 
simulation results of the driven R-L Varactor at varying amplitude of the input signal 
and in the sub-resonance region are elucidated in sections 4 and 5 respectively. 
Finally, the concluding remarks are given in section 6.  
 
 
Driven R-L Varactor Diode 
Consider the R-L Varactor circuit given in Fig. 1 driven by a sinusoidal voltage 
source V(t) = E Sin2πft. The dynamics of the circuit is described by the equation 

  )2sin( ftEVqRqL C π=++
ooo

  (1) 
 
where Vc is the voltage across the varactor diode. The circuit was simulated by using 
component values L= 400μH, R= 47Ω, and with a silicon varactor diode (type FMMV 
109) which is the nonlinear element. The capacitance variation of varactor diode is 
given by 
  C= C0/[1+VC/0.6]0.5  (2) 
 
 Here VC is the voltage across the diode under reverse bias which is given by VC = 
q/C and C0 = 62pF. In forward biased condition, the varactor diode functions like a 
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normal silicon diode. When the driving voltage is very low, the circuit behaves like a 
high Q resonant circuit with a resonant frequency given by  

  f = 
02

1
LCπ

 = 1.01MHz (3) 

 
 If the circuit contains a large value of resistance R, it is said to be dissipative. In 
this case, the period doubling routes to chaos are in harmony with the theory of 
Feigenbaum [13] and the appearance of the periodic windows follows the predictions 
of Metropolis, Stein, and Stein [14]. The resulting attractor of this system is then quite 
similar to the logistic equation xn+1 = 4 μ xn(1- xn). On the other hand, if the value of 
the resistance is small, then the attractor is more complex, but quite regular in its 
structure. It is argued that the modulation parameter λ should satisfy the recurrence 
relation 
  (λn+1 - λn) / (λn+2 - λn+1) = δ  (4) 
 
where δ is universal convergence rate. For a quadratic equation δ = 4.669…  
 In a driven R-L varactor circuit, three types of nonlinearities are present; (i) The 
nonlinear I-V characteristics of the diode. Most researchers consider it to be 
unimportant for chaotic formation [15]. (ii) The nonlinear forward-bias capacitance 
associated with the diffusion of carriers near the junction. Now the diode can be 
modelled as a parallel combination of nonlinear resistor and a nonlinear capacitor as 
shown in Fig. 2. Period doubling will occur as a result of this capacitance when its 
value reaches four times the zero bias value [16]. It is because the resonant frequency 
of the RLD circuit is inversely proportional to the square root of the capacitance (see 
Eq. 3). This is considered as the first step in a period doubling route to chaos. (iii) The 
finite diffusive dynamics of charge in the pn-junction and the associated memory of 
previous forward current contribute to the third nonlinearity. The main source of 
chaos in a driven RLD circuit was proposed due to this finite memory of forward bias 
current [17]. 

 

 
 

Figure 1 & 2: 1: Schematic diagram for a driven R-L Varactor circuit. 2: Equivalent 
model of a varactor diode. 
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Nonlinear Behaviour of the Storage Time 
The nonlinear behaviour of the storage time can be explained using the idealized 
representation of a switching circuit shown in Fig. 3(a). Prior to switching, the diode 
is taken to be forward biased with a steady state forward current of If. At t = 0, the 
circuit is switched to position b. Current through the diode is abruptly switched to –Ir, 
remains there for a limited period of time before eventually decaying to the steady 
state value as shown in Fig. 3(b). The period of time during which it remains constant 
is known as storage time τs. Other timing parameters of the circuit are recovery time 
τr, and the total time or reverse recovery time τrr. The root cause of delay in switching 
between the on and off states can be explained as follows; the forward biasing of a 
diode causes a build up of storage of excess minority carriers in the quasi-neutral 
regions immediately adjacent to the depletion region. When the diode is reverse 
biased, there is a deficit of minority carriers in the near vicinity of the depletion 
region. To progress from on to off state, the excess minority carriers must be removed 
from the two sides of the junction. It accounts for the storage time τs . This takes place 
either by eliminating carriers by recombination or by reducing the excess carriers by 
carrier flow out of the region. Neither mechanism can safely remove the charge at a 
sufficiently rapid rate to be considered instantaneous. Hence a delay is observed in 
going from the on state to the off state. An approximate expression for the storage 
time τs can be analyzed using charge dynamics of the pn junction and is given by  
  τs = τm ln [1+ Im/Ir]  (5)  
 
where Ir is the reverse current through the diode during the storage phase. With the 
amplitude of forward bias current, the reverse recovery time of the diode increase 
according to the equation 
  τrr = τm[1-exp(- |Im| /IC)]  (6) 
 
where Im is the most recent maximum forward current, τm and IC are lifetime and 
current scales particular to each diode. 

 

 
 

Figure 3: Diode switching time (a) Circuit diagram (b) Current-time transient (c) 
Voltage-time transient. 
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Behaviour in the Resonance Region  
The circuit shown in Fig. 1 was simulated using Multisim with component values L= 
400μH, R= 47Ω, and a silicon varactor diode (type FMMV 109) to give a resonant 
frequency of 1.01MHz. The dynamical nature of this circuit was studied by driving 
the circuit at this frequency and gradually increasing the drive voltage. Assuming that 
the varactor nonlinearity is fixed, various control parameters of the circuit are the 
drive frequency, the drive amplitude, and the series resistance. The response of the 
circuit was simulated by displaying the output voltage versus the drive signal. At low 
voltages, the circuit displayed the frequency multiplication peculiar to all nonlinear 
circuits. For input voltage less than 2V, output waveform is periodic, having a 
frequency equal to the resonant frequency and Vo Vs Vi appeared like a circle (Fig. 
4(a)). The first sub-harmonic appeared at a drive voltage of 2.35V, the phase spectrum 
of which is shown in Fig. 4(b). The Fourier spectrum of the output has two harmonic 
components, one at 500 kHz and the other at 1MHz as illustrated in Fig. 4(c). Further 
increase of input voltage resulted in period 4 waveform (Fig. 4(d)) for an amplitude of 
3.3V. Figs. 4(e) and 4(f) correspond to phase spectrum and time base waveform for 
inputs 4.35 and 5.58V respectively. When the amplitude of input voltage is increased 
to a large value, the system undergoes various dynamic states, wherein one can 
observe high amplitude oscillations, non-periodic waveforms with rich dynamic 
contents, and a number of periodic windows in between the chaotic behaviour. This is 
illustrated in Figs. 5(a) to 5(c). By measuring the difference in threshold voltages 
between period doublings and by using Eq. 4 the value of δ is calculated. It is found to 
be 4.669 which are in good agreement with the theoretical value.  
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Figure 4: Simulation results at 1MHz (a) Phase spectra for Vin = 0.8V (b) for Vin = 
2.35V (c) Harmonic components for Vin = 2.35V (d) Second period doubling at Vin 
= 3.3V (e) Phase spectrum for Vin = 4.35V (f) Output for Vin = 5.58V 

 
 
 

 
 

 
 

Figure 5: Phase spectra showing Vo Vs Vi for (a) Vin = 6.5V (b) Vin =10.2V (c) 
Diode voltage versus Vi for Vin = 10.2V 
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 The following explanation would give an insight into the dynamical nature of a 
driven R-L Varactor circuit. When forward biased, the un-recombined electrons and 
holes cross the junction, which diffuse back to their origin as the diode changes its 
state-of-bias. The diode, therefore acts like a capacitor which continues to charge and 
discharge with variations in the width of depletion region. More the amount of 
forward voltage, the greater the amount of charges that cross the junction and the 
longer the system needs to return to its reverse bias equilibrium. If the reverse current 
is unable to reach equilibrium before reaching the forward bias, then the next cycle 
will depend upon the previous cycle, and it is equivalent to different parameters at 
each cycle’s initial conditions. Thus, the reverse recovery and the nonlinear capacitor 
model will have memory built into them which makes the circuit chaotic due to period 
doubling or bifurcation of the output signal. For a sinusoidal signal, the power 
spectrum of the output signal will contain the fundamental input frequency and some 
high order harmonics due to the system’s nonlinearities. If the same system has to 
undergo chaos by period doubling, then additional frequency components, known as 
sub-harmonics and ultra-sub-harmonics, should appear [15, 18]. Further amplitude 
increase will result in the formation of non-periodic waveforms, leading progressively 
into higher periodicity until there are no more stable states, and eventually chaos 
prevails. 
 
 
Behaviour in the Sub Resonance Region  
In this study, the amplitude of the external voltage is served as the control parameter 
by keeping the signal frequency at 450 kHz. The circuit response was studied as 
before. The results are shown in Figs. 6 to 9. For signal amplitude in the range of 0 to 
5.8V, the circuit current is of low amplitude and we get the phase plot as a circle (Fig. 
6a). As the amplitude of the signal is increased we get first period doubling (Fig. 6b), 
followed by a second period doubling (not shown in the figure) as in the case with f 
=1MHz. But at a particular driving amplitude of Vin = 15.8V, the system exhibits a 
new high amplitude oscillation. The corresponding output waveform and phase 
spectra are shown in Figs. 7a & 7b.  
 The waveform shows that it is periodic with a frequency of 2.5 kHz much lower 
than the drive frequency. Further increase of signal amplitude results in the formation 
of non periodic waveforms and shows chaotic nature. The typical waveforms are 
shown in Figs. 8(a) – (c) for a signal amplitude of 17.2V. The continuous broadband 
spectrum shown in Fig. 8(c) establishes the chaotic behaviour of the circuit. The 
dynamic content of the circuit increases with increase in amplitude of the drive signal 
as illustrated by a sample waveform noted for Vin = 25.8V (Figs. 9a& 9b). An 
interesting phenomenon observed here is that after a period of time the circuit attains 
a periodic nature. The phase spectrum corresponding to this region of operation is a 
circle as shown in Fig. 9c.  
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 The reason for this nonlinear behaviour of the circuit is due to large diffusion 
capacitance caused by the diffusion of minority carriers under forward bias and 
transition capacitance caused by the depletion region of reverse bias. In addition, a 
third capacitance also comes into picture due to the injection of minority carriers, the 
effect of which dominates for large values of drive voltage. At higher signal 
amplitudes, the R-L Varactor acts as a low pass filter having two resonant frequencies 
of which the higher one is attenuated and lower one is locked by the circuit. This is 
the reason for the exponential decay of the extra peaks appearing well above the 
periodic background. It may be noted that, for diodes having large breakdown 
voltages such high amplitude oscillations are not obtained thereby establishing the 
possibility of third capacitance at breakdown as the cause for high amplitude 
oscillation.  

 

 
 

Figure 6: Simulation results at 450 kHz for (a) Vin = 3.3V (b) Vin = 6.3V. 
 
 

 
 

Figure 7: Appearance of low frequency signal (a) for Vin = 15.8V (b) Corresponding 
phase spectrum. 
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Figure 8: Chaotic bands observed for Vin = 17.2V (a) Output waveform (b) Phase 
spectrum (c) Power spectrum. 

 

 
 

 
 

Figure 9: Behaviour of the circuit at 25.8V (a) Output waveform up to 3.55ms (b) 
Phase spectrum up to 3.55ms (c) Phase spectrum after 3.55ms. 



114  K. Gopakumar et al 

 

Conclusions 
We have demonstrated that a driven R-L-Resonator system has a complicated and 
multi-dimensional self replicating attractor. This structure repeats itself indefinitely as 
the control voltage is increased to arbitrarily large values and a new branch is added 
whenever a period doubling route to chaos takes place. To conclude, a thorough 
understanding of chaos in the R-L Varactor circuit must include the reverse recovery 
effect and all its nonlinearities. The rich dynamic behaviour and the simplicity of the 
system discussed here allow direct applications of other theories of sub-harmonic 
generation and chaotic behaviour in nonlinear systems. 
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