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Abstract 
 

Equations describing isotropic non-Heisenberg model are obtain by the 
method of generalized coherent states in a real parameterization. We 
linearization equation of motion near the ground state and obtain the equation 
of spin wave near this point. 

 
 
Introduction 
Many condensed matter systems can be successfully described with the help of 
effective continuum field models. In systems with reduced spatial dimensionality, 
topologically nontrivial field configurations are known to play an important role [1]. 
Magnetic systems are usually modeled with the help of the Heisenberg exchange 
interaction [2,3].  
 However, for spin 2/1>S  the general isotropic exchange goes beyond the purely 
Heisenberg interaction bilinear in spin operators iS , and may include higher-order 

terms of the type ( )nji SS with n up to 2S. Particularly, a general S = 1 model with the 
isotropic nearest-neighbor exchange on a lattice is described by the Hamiltonian 

  ( ) ( )211 ++ +−= ∑ iiii SSKSSJH   (1) 

 
 Where z

i
y

i
x
i SSS ,,  are the spin operators acting at a site i , and 0, >KJ  are 

respectively the bilinear (Heisenberg) and biquadratic exchange constant. The model 
(1) has been discussed recently in connection with S = 1 bosonic gases in 
optical lattices [4] and in the context of the deconfined quantum criticality [5, 
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6].  
 The article is organized as following. In first we obtain coherent states in real 
parameterization for two group SU(2) and SU(3). In order to obtain semiclassical 
equation of motion we must obtain average values of spin, in this order, in section 
three we obtain these averages. In section four classical lattices Hamiltonian is obtain. 
In section five, with use of Hamiltonian, we calculate classical equations of motions. 
In final we linearization equation of motion near the ground state and obtain the 
equation of spin wave near this point.  
 
 
Coherent states in SU(2) and SU(3) groups 
Coherent state in SU(2) group is[7] 
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 And coherent state in SU(3) group is [8] 
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 Two angle, θ  andϕ , define the orientation of the classical spin vector. The angle
γ  is the rotation of the quadrupole moment about the spin vector. The parameter, g, 
defines change of the spin vector magnitude and that of the quadrupole moment. 
 
 
Averaged spin operators and their products in SU(3) group 
Here we consider classical counterparts of the spin operators and their products 
contained in the Hamiltonian (1). The vector  

  ψψ SS ˆ=  (5) 
 
 Can be regarded as a classical spin vector, and  
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  ψψ jiij SSQ ˆˆ=  (6) 
 
as a component of the quadrupole moment. Because the spin operators at different 
lattice sites commute, we have for all such products 

 ψψψψψψ j
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 Average spin expression for the SU(2) group is  
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and corresponding expressions for the SU(3) group are in the following form: 
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Classical lattice Hamiltonian  
In this part, we derive classical lattice Hamiltonians which are obtain from 
Hamiltonian (1), averaged over coherent states (2) and (3). As was already mentioned 
the spin operators at neighboring sites commute, so the coherent state of the whole 
lattice is  

  ∏=
n

n
ψψ  (10) 

 
 Averaging equation (1) with relation (10) and using equations (5-9), we obtain 
classical continuous limit of Hamiltonian in SU(2) group in following form 
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 And classical Hamiltonian in SU(3) group is  
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 In above relation if we set 0=g , we obtain classical Hamiltonian in SU(2) group. 
 
 
Classical equations  
In other to obtain classical equations of motion we set the above classical Hamiltonian 
in classical equations that obtained from Lagrangian in that group. 
 5-1) classical equation in SU(2) group 
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 5-2) classical equation in SU(3) group 
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Classical ground state and minimum of energy 
Note that to use the equation (14) in investigation of ferromagnets with isotropic non-
Heisenberg term, it is necessary to find the classical ground states of this magnet. To 
this end, we consider only a term in Hamiltonian (12) that without a derivative: 

  ∫ +−= )2cos2cos( 42
0 gKgJ

a
dxH  (15) 
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 In the ferromagnetic J and K>0, to find the smallest value of the 0H  we vary it 
respect to all the parameter, the ground state is obtain in the points 

  4/0 π== gorg  (16) 
 
 And minimum of energy is  

  ))(/1(0 KJaH +−=  (17) 
 
 
Linearize equations of motion near ground state for SU(3) group 
We consider now the dispersion of spin waves propagating near the ground states. To 
do this end, we linearize the classical equations in (14) near the ground states.  
 Classical Hamiltonian (12) near the ground state is 
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 And equations are 
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 For the ground state, near the point 2/πθ =  , in linear small excitation the above 
equation changes in the following form: 
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 We consider now the dispersion of spin wave propagating near the ground state. 
To this end we considering two functions θ  and ϕ  in the following plane waves, 
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 We obtain the following equation for the spin wave propagating near the ground 
state 
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 Where the value of m for SU(3) group is 2

0)2( aKJm +=  . It is evidence from 
equation (22) that the quadrupole branch for the Hamiltonian (1) is nondispersive. 
 
 
Discussion 
In terms of spin coherent states we have investigated S = 1 spin quantum system with 
the bilinear and biquadratic isotropic exchange in the continuum limit. The proper 
Hamiltonian of the model can be written as bilinear on the generators of SU(3) 
group[9] . Knowledge of such group structure enables us to obtain some new exact 
analytical results. The analysis of the proper classical model allows us to get different 
soliton solutions with finite energy and the spatial distribution of spin-dipole and/or 
spin-quadrupole moments termed as dipole, quadrupole, and dipole-quadrupole 
soliton, respectively. 
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