Abstract

In the traditional dwellings, source of 220Rn is the bare soil floor, either soil in cave dwellings or unburned adobe bricks and uncovered stone, wall in above ground dwellings. Because of the short half life of 220Rn, the indoor concentration is not homogeneous but increases towards the walls, floorings and ceilings. In view of this an extensive study is made by using the solid state nuclear track detector based dosimeters which were installed in parabolic fashion to see the variations of 220Rn and its progeny levels as a function of distance in a room of volume 30 m3. Higher concentrations were observed at the flooring, wall and ceiling of the room and it decreases as the detector is moved away from them. 220Rn progeny concentrations did not show any variations with the distance from the wall.

Keywords: Thoron, progeny, distribution, dwellings.

Introduction

The 220Rn has a short half-life, 55.6 seconds, compared to 222Rn. This means the distance that the 220Rn gas atoms can migrate in the ground and inside building materials and buildings before it decays is much shorter than 222Rn gas and also it is easily stopped by wall paper and other surface sealants. Therefore the risk for high 220Rn levels in indoor can be expected to be low, at least much lower than the risk for high levels of 222Rn. However, in buildings with an ineffective barrier between soil and indoor air the entry of 220Rn could be significant, especially if the gravel or the soil itself immediately under the building has a high concentration of 232Th. Soil as a significant source of indoor 220Rn has been demonstrated by Li et al [1]. Enhanced 220Rn levels were reported in residential traditional dwellings in India [2] and in China.
[3]. The indoor 220Rn concentration is not only determined by the exhalation but also by the detector distance from the wall, ceiling and the flooring of the room. In the report of UNSCEAR [4] the annual effective dose from 220Rn and its progeny was evaluated to be 75 µSv, only about 6% of that of 222Rn and its progeny. Measurements were performed in order to form a basis for assessing the risk for high indoor 220Rn levels of Bangalore city.

Methods and Measurements

Solid State Nuclear Track Detectors (SSNTD)

SSNTD based dosimeters were used for the measurement of thoron and its progeny concentrations. This is a good technique to study the long-term measurements taking into account the diurnal, monthly and seasonal variations of 222Rn and 220Rn concentrations [5]. The mode of sampling is passive and integrated. The detailed description of experimental methodology [6] and calibration procedure [7] is available in the literature.

Spark Counter

Spark counter technique is applicable to plastic detectors, which provides a convenient, economical and fast method for track counting. This technique was developed by Cross and Tommasino [8] and is discussed in detail by Samyogi et al [9].

Results and discussion

The main objective of the study is to find the dependence of concentrations on distance and to assess the possible health hazards from indoor 220Rn levels in Bangalore city. Buildings were chosen regardless the natural 232Th concentrations. All the measurements were performed on the ground floor. The dosimeters were suspended in the room of volume 30 m3 in a lower and upper parabolic fashion shown in Figs. 1-2. Large numbers of dosimeters were suspended in particular fashion to reveal the actual information about the dependence of concentration as a function of distance.

Figure 1: Parabolic curve: focus away from the floor
Figure 2: Parabolic curve: focus away from the Ceiling
The results of the measurement of variations of 220Rn concentrations with floor distance are shown in Fig. 3. The steep increase in concentration close to the floor or wall is observed and the concentration drops exponentially as the detector distance increases from the floor or wall and it may be due to its short half life. This suggests that it is necessary to keep the distance from the floor or wall when we measure indoor 220Rn concentration [10]. It is evident from the Figure 3 that the 220Rn concentration is declining towards the room center and it may be because of the short half life of 220Rn and the time necessary for its transport [10].

It is evident that the walls and floor of rooms were made of local soil material and bricks, which are the source of indoor 220Rn concentrations. Figs. 4 represent the vertical profiles of 220Rn concentrations, as the detector distance increases from the floor the concentration decrease exponentially. During the measurement period with twin cup dosimeters, the distribution of 220Rn progeny and 222Rn concentration were also measured at the different distance from wall and floorings. 220Rn progeny concentration was nearly independent of the distance from soil wall. The uniformity of concentrations in a dwelling is may be due to their long half life [11] and this was confirmed through model calculation [12].

In contrast, the 222Rn concentration is homogeneous within the dwelling due to its longer half-life of 3.8 days. Close to the walls or floorings the 220Rn concentration is significantly higher. At increasing wall or floor distances, the 220Rn concentration may decrease but the 222Rn concentration remains steady. This type of observation was also made in several dwellings in the Gansu area [13], so that it appears to represent a general feature of indoor 222Rn concentration. The turbulent transport from the wall into the room center decreases the relative contribution of the 220Rn close to the wall. This is important for the dose assessment of dwellers only at ventilation rates above the exhalation saturation the total activity declines [14].

![Figure 3: Concentration profile of 220Rn](image1)

![Figure 4: Vertical Distribution of 220Rn](image2)

Figure 3: Concentration profile of 220Rn levels

Figure 4: Vertical Distribution of 220Rn levels
Conclusion
The concentrations were high near the wall and flooring of the room and it drops exponentially with the distance from wall and flooring. Indoor 220Rn progeny concentrations are uniform with the distance from the wall. Continuous and long-term studies such as diffusion of 220Rn from each wall of the building materials and factors that influences the 220Rn progeny levels in dwellings are necessary to assess the dose due to 220Rn and its progeny. More detailed studies on the evaluation of public exposure from the natural radiation; particularly the exposure from indoor 220Rn and its progeny should be planned and performed in the country.

Acknowledgements
The research work is sponsored by the X Plan of University Grants Commission, New Delhi in the form of research grants under the Research Funding Council for major research project. The cooperation extended by all the residents is highly appreciated and the support extended by all the principals of Government Science College, Bangalore for allowing us to carry out the research work in the test room is highly acknowledged.

References

