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Abstract 
 

Using linearised quantum hydrodynamic model along with Maxwell’s 
Equation the effect of static uniform magnetic field on the frequency of 
plasma oscillations in a single walled carbon nanotube (SWCNT) is discussed 
here. In presence of a static transverse magnetic field, in short wavelength 
limit plasma dispersion relation is found varied in accordance with the applied 
magnetic field. 
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Introduction 
Plasma consists of electrons and ions with total charge zero. Plasma is usually 
considered as an electron gas moving in the background of positive ions. Plasma is a 
quasineutral gas of ions, electrons and neutral particles [1].The term plasma was first 
used by Langmuir [2] in 1928. 
 The study of carbon nanotubes (CNTs) is now an active area of research, which 
could lead to the development of advanced technology devices. One of the most 
fascinating aspects about CNTs is their surface mode excitations. During the past 
years, a lot of experimental and theoretical works have been done to study the high-
frequency excitations (electron oscillations) in these systems. Also, it is well-known 
that in such systems both the positive ions and the electrons oscillate under low-
frequency disturbance. 
 Fetter [3] used a simple hydrodynamic model to study the electrodynamics of the 
electron–ion plasma in a periodic array and obtained an acoustic branch in addition to 
the optical branch. Wei and Wang [4] studied the dispersion relation of quantum ion 
acoustic wave (QIAW) oscillations in single-walled carbon nanotubes (SWCNTs) 
with the quantum hydrodynamic (QHD) model which was developed by Haas et al [5, 
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6]. In the presence of a static magnetic field, we may expect a new excitation in 
carbon nanotubes (CNTs), i.e. quantum magnetosonic wave (QMSW) oscillations. 
Let us note that the effects of a static magnetic field on the plasmon oscillations of an 
electron gas in CNTs have been investigated by several authors using various 
methods. Shyu et al studied the magnetoplasmon of SWCNTs within the tight-binding 
model [7]. The low-frequency single-particle and collective excitations of SWCNTs 
were studied in the presence of a magnetic field by Chiu et al [8, 9]. Vedernikov et al 
[10] studied the collective oscillations of two-dimensional electrons in nanotubes in 
the presence of a magnetic field parallel to the tube axis. The energies of neutral and 
charged excitations and plasmon frequencies in nanotubes as functions of the 
magnetic field were analyzed by Chaplik [11]. Gumb[12], calculated the dispersion 
relation of the collective magnetoplasmon excitations for an electron gas confined to 
the surface of a nanotube when a magnetic field is perpendicular to its axis. In 
particular, by using the hydrodynamic model and Maxwell’s equations, Kobayashi 
[13] studied the magneto static plasma wave oscillations of a SWCNT in the voigt 
configuration. Afshin Moradi [14, 15, and 16] has studied the effect of a static 
external magnetic field in a SWCNT.  
 Here we are interested in the application of transverse magnetic waves which 
propagate parallel to the surface of a SWCNT and concentrate on the excitations of 
the electron–ion system as two fluids confined to its surface. There is assumed to be a 
static magnetic field B0 that is normal to the cylindrical surface (Voigt configuration). 
 
 
Theory and Discussions 
Let us consider an infinitely long and infinitesimally thin SWCNT with a radius a and 
take the cylindrical polar coordinate x = (r, φ, z) for an arbitrary point in space. Let us 
consider the CNT to consist of electron and ion fluids superimposed at r = a with 
charges e and Ze, respectively. 
 The equilibrium densities (per unit area) of electrons are  n0e  and ions n0

i satisfy 
n0

i = n0  and ne
0 Z n0

i= Zn0  

  (x,t) + Zno   ║ . ue (x, t) = 0,   (1) 

    + no   ║ . ui (x, t) = 0, (2) 

 And the equation of linearised momentum 

  =  e/m [E║ (x,t) +  ue (x, t) x Bo]  

     ║ ne(x, t) +      ║ [   ║
2

  ne(x, t)] (3) 

    =  [E║ (x,t) +  ui(x, t) x Bo]  (4)       
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 Where ne (ni) is the velocity of electron (ion) and 

   ║= eˆz (ə/əz) +a-1eˆφ (ə/əφ)  (5) 

 The three terms on the RHS of equation (3)are respectively force due to electric 
field and magnetic field, force due to internal interaction or can be considered as 
classical pressure of electron fluid and the third term comes from the quantum 
diffraction effect which can be considered as quantum pressure. 
 The electric current density flowing on the surface of the cylinder is given by  

  Je(x,t)  =σeE║(x,t)  (6) 

  Ji(x,t)  =σiE║(x,t)  (7) 

 Where σeˆ( σiˆ) is the conductivity tensor of the electron (ion) 

 Now we can define Fourier-Bessel transform Am(q) of an arbitrary function 
A(φ,z,t) by 

  A(φ,z,t)=  Am(q) exp [i (mφ + qz- ωt)]  (8) 

 Using equations (1) to (7) by eliminating terms ne  and ni  we get equations for  σe 
and  σI in terms of cyclotron frequency ω. ie 

  ωce = eBo/me  (ωci =ZeB0/mi)    of electron (ion) .    

 In the space above and below electron – ion cylinder, the transverse electric wave 
satisfies 
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 Where Im(x) and Km(x) are the modified Bessel functions and K2 = q2 - ω2/c2 
where c is the speed of light.  For the case speed of light can be taken to be infinitely 
large we have 

  ω
4 - ω2  

   

  +  

  x    g  
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    (10) 

 Which determines the normal electrostatic modes. 
 The roots of the above equation give (in the limit Zme /mi<<1) equations for ω+ 
and ω- where ω+ for high frequency dispersion and ω- for low frequency (QMSW-
quantum magneto sonic wave) dispersion.  
 In short wave length limit i.e. qa→ we may use the asymptotic expression of the 

Bessel functions Im(x) = ex /  and Km(x) = e-x, so that the dispersion relation  

  ω-
2(q) ≈  (11) 

 Using the above equation the variation of the dimensionless frequency ω-/ ωs with 
respect to the variable qaB for different values of fields applied for carbon nanotubes 
are studied. Here ωs =(Zme ω

2
ce/mi)

1/2 .The  dispersion curves obtained is as shown in 
figure 1. 

 
 

 
          qaB 

 
Figure 1 : Dispersion relation ω-/ ωs versus the dimensionless variable qaB 

 
 
From equation (11) for a single walled carbon nanotubes  
 
 
Conclusion 
In conclusion we can see that the frequency is varied in accordance with the B0, for 
long wave length limit. The dispersion relation for different values of Bo are grouped 
in figure 1.This was interpreted as the applied magnetic field is increased the plasma 
dispersion exhibits stronger dispersions. 
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