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Abstract 
 

Electric  field  gradient  at  nuclear  site  in  the  lattice  of  tetragonal  close  
packed  (TCP)  metals  such  as  Indium  is  computed  using  the  theory  
developed  on  the  pattern  of  the  Charge  Shift  Model  initiated  for  
hexagonal  close  packed  (hcp)  lattice.  Numerical  results  are  obtained  
using  FORTRAN  programs  developed  by  us  for  electric  field  gradient  in  
Indium.  A  tabulation  of  lattice  sums  for  electric  gradient  in  this  metal  
suggests  that  all  the  three  nonequivalent  sites  under  the  charge  shift  
ansatz  do  not  simultaneously  pass  through  null  electric  field  gradient  for  
the  case  when  the  tcp  lattice  of  the  element  transforms  to  body  
centered  cubic  lattice  with  axial  ratio  unity.  At  least  one  non-equivalent  
electronic  site  in  the  frame  work  of  the  charge  shift  model  lacks  the  
point  symmetry  of  tetragonal  system  and  contributes  an  extra  electric  
field  gradient.   
 
Keywords:  Lattice  sum,  TCP  lattice,  electric  field  gradient,  Indium,  
charge  shift,  body  centered  cubic  lattice. 

 
 
Introduction 
Electric  field  gradient  (EFG)  is  an  important  structural  property  of  crystalline  
solids  like  metal  and  alloys.  Local  symmetry,  co-ordination  and  valence  of  
defects  in  solids,  electronic  and  magnetic  properties  are  extracted  from  
quadrupole–field  gradient  relations.  The  non-cubic  ionic  lattice  and  spherically  
asymmetric  electronic  environment  produce  EFG  at  a  nuclear  site,  and  are  only  
approximately  known.  Several  approaches  appear  in  literature  for  calculation  
using  methods  such  as  band  structure,  OPW  [1],  APW,  tight  binding,  pseudo  
potential  model  [2],  etc.  Though  these  provide  elegant  theoretical  footing,  
surely  these  pose  formidable  problems  in  terms  of  actual  calculation  of  exact  
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wave  functions.  And,  as  such,  semi  classical  approaches  have  surfaced  with  
some  momentum.  Charge  shift  model  of  Bodenstedt  [3]  was  initiated  in  this  
perspective  for  hcp  (sp)  metal.  Verma  et  al  extended  it  to  include  transition  
metals  with  hcp  lattices  [4,  5].  The  validity  region  of  the  charge  shift  model  
was  investigated  by  Gupta  et  al  [6].  The  method  was  recently  used  to  
calculate  cohesive  energy[7,  8,  9].  We  developed  similar  model  for  the  
tetragonal  close  packed  crystals  for  the  first  time.  Calculation  for  EFG  in  
Indium  agreed  well  [10].Here  we  use  a  plane  wise  lattice  summation  to  our  
lattice  minimizing  computation  time  by  quick  convergence.  We  observe  by  
graphical  analysis  of  lattice  sums  in  the  framework  of  the  charge  shift  model  
the  presence  of  asymmetry  in  one  of  the  non-equivalent  conduction  electronic  
sites,  which  may  be  a  possible  source  of  some  extra  electric  field  gradient  in  
the  frame  work  of  charge  shift  model  for  tetragonal  system. 
 
 
Theory   
An  ideal  unit  cell  of  tetragonal  close  packed  (tcp  or  bct)  lattice  is  
characterized  by  interfacial  right  angles,  and  lattice  parameters  a=b≠c.  In  
crystals,  the  axial  ratio  (c/a)  differs  from  the  ideal  value  of  √2.In  crystal,  ions  
of  tcp  metal  are  located  at  the  four  corners  and  the  body  center  of  the  unit  
cell.  The  conduction  electrons  are  smeared  in  lattice  according  to  amplitude  
square  of  their  wave  functions.  The  exact  wave  functions  are,  however,  not  
available,  and  approximate  methods  are  in  use  for  the  computation  of  
electronic  properties  up  to  significant  degree  of  justifications.  In  charge  shift  
model,  conduction  electrons  are  assumed  as  tiny  spheres  located  midway  
between  the  ions  forming  the  first  co-ordination  cell  of  the  origin  occupying  
ion. 

 

 
Fig.  1:  Conduction  electron  cabinet  around  the  ion 
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 Metallic  bonding  arises  due  to  their  gluing  action.  Using  the  crystal  
symmetry,  we  get  two  non-equivalent  electronic  sites  (e  and  t  )  forming  two  
non-equivalent  planes  perpendicular  to  the  c-axis:  mixed  plane(A)that  is  
composed  of  ions  and  one  type  of  conduction  electron  spheres,  while  pure  
plane(B)that  consists  purely  of  the  remaining  type  of  conduction  electron  
spheres. 

 

 
Fig.  2:  TCP  unit  cell:  non-  equivalent  sites  and  planes 

 
 
 The  ionic  charge,  consistent  with  electronic  wave  function  overlap  with  
nucleus,  is  denoted  by  Zeffe,  where  e  is  modulus  of  electronic  charge.  The  
total  conduction  electronic  charge  per  ion  (−ܼ௘௙௙݁)  is  equally  distributed  
among  the  twelve  electronic  sites  in  the  co-ordination  cell  (figure-1),  to  start  
with,  forming  half  of  the  total  charge  at  a  site  as  the  other  half  is  supposed  
to  come  from  the  other  partner  ion.  The  ions  lie  in  the  mixed  planes.  The  
charge  on  a  conduction  electron  sphere  in  these  planes  is  denoted  by  Qt,  In  a  
unit  cell,  the  eight  Qt  lie  at  midpoints  of  edges  and  four  at  middle  of  each  
faces  parallel  to  c-axis.  The  other  type  of  electronic  site  that  lies  in  the  pure  
plane  is  charged  by  Qe,  occupying  a  total  of  eight  sites  in  the  unit  cell,  four  
above  and  four  below  the  ion  at  the  body  center  of  the  unit  cell  (figure-2).  
The  electrical  neutrality  for  the  unit  cell  is,  thus,  written  as 

 ଵ
ସ
[8Qt]  +  ଵ

  ଶ
[4Qt]  +  8Qe+  2Zeffe  =  0   (1) 
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 There  is  now  affected  a  shift  of  charge  from  Qt  to  Qe-sites,  parameterized  
by  an  algebraic  factor  δ.  This  and  the  neutrality  of  cell  are  used  to  find  the  
charges  as: 

 ܳ௧=  --ଵ
଺
Zeffe  (1+2δ)   (2) 

 Qe=  --ଵ
଺
  Zeffe  (1-  δ)   (3)   

 
 The  factor  δ  is  obtained  by  considering  the  elasticity  and  the  electrostatics  
of  the  unit  cell  as  follows.  The  charges  resulting  due  to  the  shift  produce  a  
stress  that  brings  the  ideal  unit  cell  to  the  actual  shape  and  size.  The  same  
can  be  affected  by  mechanical  stress  also.  The  two  approaches  are  made  
consistent  and  δ  is  expressed  in  terms  of  compliance  co-efficient  Sij  for  the  
element  with  tcp  structure.  Depending  upon  the  sign  and  magnitude  of  δ,  the  
departure  of  axial  ratio  from  ideal  value  is  fairly  explained.  The  derivation  and  
work  concerned  is  the  same  as  we  have  reported  earlier  [10].  We  get 

ߜ    =
೎
ೌି√ଶ

√ଶ
ହସ  ఌబ௔ర

൫௓೐೑೑௘൯
మ(ଶௌయయିௌభమିௌభభ)

   (4) 

 
 Thus,  using  equation  (4),  the  charge  distribution  in  the  whole  crystal  is  
obtained  under  the  framework  of  the  model.  The  value  of  Zeff  e  is  obtained  for  
suitable  overlap  of  electron  wave  function  with  the  nucleus. 
 
The  electric  field  gradient 
Once  a  charge  distribution  is  known,  numerical  computation  of  electronic  
properties  such  as  electric  field  gradient  is  a  natural  step  for  a  justified  model  
in  a  system  such  as  TCP. 
 Let  us  takea  charge  q  at  position  ⃗ݎrelative  to  an  ionic  site  as  origin  of  co-
ordinates  in  the  crystal.  It  produces  electric  field  intensity  at  the  origin  whose  
space  rate  of  variation  along  c-axis  as  Z-axis  (the  electric  field  gradient  along  
c-axis)  is  given  by 

 Vzz=  ௤
  ସగ∊૙

ଷ  ௭మି௥మ

௥ఱ
   (5) 

 
 Taking  in  the  tcp  lattice  a-axis,  b-axis  and  c-axis  as  X-axis,  Y-axis  and  Z-
axis  respectively,  the  crystallo-physical  co-ordinates  of  lattice  sites  are  denoted  
by  real  number  triplets  n1,  n2  and  n3  in  units  of  lattice  parameters  a,  a,  and  c.  
To  find  the  EFG  in  equation  (5),  we  must  take  contributions  from  all  the  sites  
in  the  lattice.  For  this  a  lattice  summation  is  required. 
 
Notations: 
௜ܰ=݊௜ + ௜௝ೖݐ   :  An  i-th  component  of  position  vector  of  nonequivalent  charge  

located  at  k-th  position  of  j-th  nonequivalent  type  site  in  the  n-th  unit  cell 
௝ܯ =  Multiplicity  per  unit  cell  for  a  j-th  non-equivalent  site. 
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In  this  notation  system,  the  position  vectors  may  be  written  as 
࢘ =   ∑ ௜ܰࢋଙෝ   (i  =1  for  x-component,  2  for  y-component  and  3  for  z-
component). 
 The  vectors  ࢋଙෝ   are  the  unit  vector  i,  j  and  k.  The  position  vector  of  a  site  
in  TCP  system  is,  thus,  given  by   
 r=  (n1+  ݐଵ௝ೖ)  i  +  (n2  +  ݐଶ௝ೖ)  j  +  (  ೎ೌ)(  n3  +ݐଷ௝ೖ   )  k. 
 
 With  these  notations,  the  EFG  may  be  written  as 

௭ܸ௭ = ෍ܳ௝

ଷ

௝ୀଵ
௝ܾ 

 
 Here  ܳ௝  are  charges  given  in  equations  (2)  and  (3)  with  ܳ௝equal  to  Zeffe  
for  j=1,    ܳ௧  for  j=2  and  Qe  for  j=3.  The  lattice  sum  is  contained  in ௝ܾ,  where 

௝ܾ =
݁

଴ܽଷ߳ߨ4
 ௝ܤ

 
 With 

 Bj=  ∑ ∑ ∑ ∑ ଷேయమି(  ேభమାேమమାேయమ)
(ேభమାேమమାேయమ)మ.ఱ

ெೕ
௝ೖୀଵ௡భ௡మ௡య    (6) 

 
 It  may  be  seen  that  the  lattice  sums  given  by  equation  (6)  depend  only  
upon  axial  ratio  (c/a).   
 Lattice  sum  for  evaluation  of  EFG  poses  problem  in  terms  of  convergence.  
Much  care  has  been  taken  in  this  direction  by  using  various  lattice  sum  
methods  like  plane  wise  summation,  summation  in  spherical  region,  summation  
using  Fourier  transform  and  Parseval  formula[11],  and  Euler-Meclaurin  
series[12,  13].  We  have  used  here  a  less  straining  yet  working  method,  the  
first.  In  plane  wise  summation  procedure,  we  consider  a  particular  plane  
normal  to  c-axis,  the  fourfold  symmetry  axis  here,  sum  over  all  the  sites  and  
then  do  the  same  for  the  next  plane,  and  so  on.  All  these  sums  are  added  
together  to  give  the  lattice  sum. 
 The  net  EFG  at  nuclear  site  due  to  ionic  and  electronic  sites  can,  thus,  be  
calculated.   
 However,  the  nucleus  that  is  put  now  in  the  crystal  environment  at  the  
origin  interacts  with  the  field  gradient  splitting  its  energy  levels  that  is  strongly  
dependent  on  the  degree  of  deviation  of  wave  function  from  Free  State.  A  
correction  to  account  for  this  is  to  multiply  the  distant  sum  by  Sternheimer  
factor  (1-  ߛஶ)  for  ions  and  electrons  [14].  Thus,  we  write  for  EFG  (eq)  at  
nuclear  site  in  crystalline  environment  as 

 eq=ൣܼ௘௙௙ܤଵ + Q୲  ܤଶ + ܳ௘ܤଷ൧(1− (ஶߛ   ೐
  రഏചబೌయ

   (7) 
 
 The  three  dimensionless  lattice  sums  Bj  in  the  above  equation  are  
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independent  of  the  lattice  parameter  a,  and  depend  only  on  the  axial  ratio  c/a  
of  the  crystals  with  interfacial  angles  90°.  The  charges  Qj  and  anti-shielding  
factor  are  dependent  on  element  in  question.   
 
The  numerical  computation  of  the  lattice  sums  for  EFG   
For  numerical  computations,  co-ordinates  of  TCP  lattice  points  and  electronic  
sites  within  unit  cell  are  obtained.   

 
Table  1:  Crystallo-physical  co-ordinates  used  in  TCP  unit  cell 

 
Non-eq  

charges(࢐ࡽ) 
z-coordinates  of  

the  planes 
Co-ordinates  in  units  of  a,  a  and  c 

Zeff  e 0,  c/2,  -c/2 {0  0  0} 
{૚
૛
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૛
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૛
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 We  prepared  the  Table  1  using  body  centered  ion  as  origin  of  orthogonal  
axes  with  X-,  Y-  and  Z-axes  parallel  to  a-,  b-  and  c-axes  respectively.  The  
lattice  sums  of  equation  (6)  were  evaluated  for  a  large  number  of  c/a-values  
and  graphs  were  plotted. 
 The  lattice  sum  over  all  the  ions  in  z=0  plane  turns  out  to  be  -9.03316  for  
the  standard  axial  ratio  of  1.414  for  which  the  charge  shift  parameter  δ  =0.  
This  compares  well  with  the  corresponding  value  -9.03362  obtained  by  de  
Wette  [11]. 
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Fig.  3  :  The  three  lattice  sums  and  axial  ratio 

 
 
 For  the  axial  ratio  equal  to  1,  the  TCP  lattice  goes  bcc  for  which  case  
EFG  along  c-axis  is  expected  to  be  zero  due  to  cubic  symmetry.  For  this  case,  
our  calculation  of  ionic  sum,  B1,  turns  out  to  be  0.0001,  and  is  encouraging  
up  to  three  decimal  places  of  magnitude.  The  total  EFG  turns  out  to  be  
0.035∙1021Vm-2.  This  small  deviation  from  zero  may  be  attributed  to  some  non-  
cubic  degree  in  conduction  electron  packets  as  detected  in  the  graphical  
treatment. 
 To  see  inside  features,  we  plot  these  Bj  against  axial  ratio  and  analyze.  
The  plot  indicates  that  ionic  lattice  sum  (B1)  and  electronic  lattice  sum  (B3)  
pass  to  zero  for  an  axial  equal  to  that  of  bcc  crystal.  The  sum  B3  shows  peak  
at  axial  ratio  1.88  with  a  value  +4.9855,  and,  thereafter,  decrease  slowly  to  
meet  abscissa.  This  is  very  interesting  as  TCP  goes  to  bcc  at  c/a  =  1.  
However,  the  sum  B2  shows  slight  deviation  from  this  behavior. 
 The  sum  B2  also  tries  to  reach  closer  to  zero  near  bcc  axial  ratio  (axial  
ratio  1.1)  but  remains  negative.  The  lattice  of  sites  for  this  sum  may  be  
slightly  non-cubic  at  the  position  of  peak  and  suggest  asymmetry  in  this  sub-
lattice.   
 
Result  of  EFG  for  Indium 
Metallic  Indium  (In)  crystallizes  in  a  tetragonal  close  packed  structure  with  
lattice  parameter  a=3.253  angstrom  and  c=  4.947  angstrom  at  300  K  of  
temperature.  The  value  of  electric  field  gradient  in  Indium  may  be  obtained  
using  the  lattice  sums  appearing  in  equation  (6).It  turns  out  to  be  1.50  ∙1021  
Vm-2for  lattice  parameter  a=3.25Åand  the  data  for  elastic  constants,  axial  ratio  
(1.076)  and  Sternheimer  factor  ߛஶusedpreviously  by  Verma  et  al  [10].   
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Table  2:  EFG  in  nucleus  of  In  metal 
Sternheimer  factor 

 (ஶࢽ-1)
EFG  calculated 

(×1021  Vm-2) 
EFG  quoted  in  ref[10] 

(×1021  Vm-2) 
24  (ion) 

25  (mean) 
25.9(neutral  atom) 

1.394 
1.452 
1.504 

 
1.45 

 
 
The  experimental value quoted there, is 1.45 1021 Vm-2.However, in the above 
reference [10], the Sternheimer factor ߛஶused is -24.9 which is for a neutral atom, and 
which, for ionized Indium in crystal, should be divided by 1.1 [15].We effected this 
change, and the value of EFG turns out to be 1.394  1021  Vm-2(Table-2) 
 
 
Conclusion 
The  electric  field  gradient  in  tetragonal  system  of  Indium  is  calculated  
successfully  by  charge  shift  model.  The  charge  shift  model  for  EFG  in  
tetragonal  system  presents  the  crystal  as  composed  of  three  lattices:  one  made  
of  ions  only,  giving  the  lattice  sum  B1,  and  two  lattices  made  of  two  non-
equivalent  electronic  charges,  giving  lattice  sums  B2  and  B3.  The  lattice  of  
conduction  electron  packets  lying  in  the  ionic  planes  slightly  lacks  the  point  
symmetry  possessed  by  ionic  crystal  and  introduces  an  extra  EFG  contribution  
to  electronic  electric  field  gradient. 
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