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Abstract 
 

Electric field gradient at nuclear site in the lattice of tetragonal close packed 
(TCP) system of metallic stannum (Sn) at nuclear site are computed at several 
temperatures using a model developedonthe pattern similar to the charge shift 
model initiated for hexagonal close packed lattice. Numerical results are 
obtained using FORTRAN programs developed by us. 
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Introduction 
Electric field gradient (EFG) is defined as spatial rate of variation in electric field 
intensity and is, thus, a nine component tensor defined ata space point. It isan 
important structural property of crystalline solids like metals and alloys through its 
well-known interaction with nuclear quadrupole moment. Local symmetry, co-
ordination and valence of defects in solids, electronic and magnetic properties are 
extracted from quadrupole–field gradient relations.Several research articles appear in 
literature for its calculation using methods such as band structure, OPW[1],APW,tight 
binding, pseudopotential model [2], etc.  Though these provide elegant theoretical 
footing, surely these pose formidable problems in terms of actual calculation of exact 
wavefunctions. The non-cubic ionic lattice and   the electronic environment that is not 
spherically symmetric, produce EFG at a nuclear site, and are only approximately 
known. Despite numerous publications, the complete theory of EFG seems open. 
Such approaches as semi classical have gained momentum. Charge shift model of 
Bodenstedt [3] was initiated in this perspective for hexagonal close packed (hcp) sp-
metal.Verma et al extended it to include transition metals of hcpsystem [4,5]. The 
validity region of the charge shift model was investigated [6]. The method was 
recently used to calculate cohesive energy[7,8,9,10]. We developed similar model for 
the tetragonal close packed crystals for the first time. Calculation for EFG in Indium 
agreed well[11].Here we  have  taken metallic stannum as our system( Sn-II) and used 
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a different approach to lattice sum as compared to previous work minimizing time and  
giving quick convergence.  
 
 
 
Theory 
Theelectric field gradient (eq) at nuclear site in crystalline materials plays a dominant 
role in nuclear quadrupole splitting, E. For a nucleus in the state⟨ܫ,݉ூ|,it is given by 

ܧ∆ =  ܳ݁ ݍ݁
3݉ூ

ଶ − ܫ)ܫ + 1)
ܫ)ܫ4 + 1) (1 +  ଵ/ଶ(ߟ

The asymmetry parameter ߟ is set zero in tetragonal lattice by choosing the four fold 
symmetry axis, the c-axis, as the axis of quantization. The nuclear transition 
frequency in such a case may be given( in unit of MHz) by  

௠|→|௠|ାଵ|ߥ =
3(2|݉| + 1)
ܫ2)ܫ4 − 1)

݁ଶ

ℎ ܳ 

The experimental value of EFG is extracted from the measurement of the frequency 
and the quadrupole moment. It known that the experimental techniques are not free of 
error bars. Hence electronic contribution to EFG has always been open to question as 
ionic contribution comes from lattice summation and electronic one is obtained by a 
subtraction. In the model we are going to consider, both the ionic and the electronic 
EFG are calculable using lattice summations. We take up here the case of tetragonal 
close packed lattices. 
Anideal unit cell of tetragonal close packed (tcp or bct) lattice is characterized by 
interfacial right angles, lattice parameters a=b≠c, and anaxial ratio (c/ a)equal to√2 , 
that in actual crystals depends upon the particular motif and temperature.In our model, 
ions of tcpmetal are located at the four corners and the body center of the unit cell. 
Conduction electrons are assumed as tiny spheres located midway betweenthe ions 
forming the first co-ordination cell of the origin occupying ion. In this procedure, we 
get two non-equivalent electronic sites forming two non-equivalent planes 
perpendicular to the c-axis:mixed planethat is composed of ions andone type of 
conduction electron spheres,andpure planethat consists purelyof the remaining type of 
conduction electron spheres. We determine the charge distribution as follows. 
The ionic charge, consistent with electronic wave function overlap with nucleus,is 
denoted by   Zeffe,wheree is modulus of electronic charge. The charge on a conduction 
electron sphere in the mixed planes is denoted by Qt, and that in the pure plane by Qe. 
In a unit cell, the eight Qtlie at midpoints of edges and four at middle of each faces 
parallel to c-axis. The other type,Qe, isoccupying a total of eight sites in the unit cell, 
four above and four below the body-centered ion. The electrical neutrality for the unit 
cell, thus, gives us 
    2Qt +4Qe+ Zeffe=0   (1) 
  
To start with, a charge equal to negative of the ionic charge is equally distributed 
among the twelve electronic sites in the co-ordination cell. To realize actual axial 
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ratio, there is now affected a shift of charge from Qt-sitesto Qe-sites, parameterized by 
an algebraic quantityδ. 
The charge transfer parameter δ is obtained by using the elasticity data and 
electrostatics of the unit cell on the following basis. The charges resulting after the 
shift produce an electrostaticstress that brings the ideal unit cell to the actual shape 
and size. The same can be affected by mechanical stress also. The two approaches are 
made consistent and δ is expressed in terms of compliance co-efficientSijfor 
tcpstructure as has been reported earlier by us [11]. We get 

ߜ     =
೎
ೌି√ଶ

√ଶ
ହସ ఌబ௔ర

(௓ୣ୤୤ ௘)మ(ଶௌయయିௌభమିௌభభ)
    (2) 

 
This,along with the neutrality Eq (1) of cell, is used to find the charges as: 
                                        ܳ௧= −  ଵ

଺
Zeffe (1+2δ)   (3) 

 
Qe= −  ଵ

଺
  Zeffe (1- δ)    (4)  

Thus, the charge distribution in the whole crystal is obtained under the framework of 
the model. The value of Zeffe is obtained for suitable overlap of electron wave 
function with the nucleus. 
 
The Electric Field Gradientusing the Nonequivalent Charges 
 
A charge q at position rrelative to an ionic sitetaken as origin of co-ordinates in the 
crystal produces electric field intensity at the origin whose space rate of variation 
along c-axistaken as Z-axis is given by 
  Vzz=  ௤

   ସగ∊૙

ଷ ௭మି௥మ

௥ఱ
  (5) 

Using thetcp lattice with a-axis and b-axis taken along X-axis and Y-axis 
respectively, and crystallo-physical co-ordinates in units of lattice parameters a, a, 
and c are denoted byreal number tripletsn1, n2andn3. 
 Taking (000) at the interstitial ion in the unit cell,co-ordinates for the nonequivalent 
sites aregiven in Table1. 
Using these, the position of a sitein any other unit cell may be written. 
Notations: 
௜ܰ=݊௜ + ௜௝ೖݐ  denotes thei-th component of position vector of nonequivalent charge 

located at k-th position of j-th nonequivalent type site in the n-th unit cell.  The 
multiplicity per unit cell for a j-th non-equivalent site is denoted byܯ௝. In this notation 
system, the position vectors may be written as 
࢘ =  ∑ ௜࢛ܰ௜          (i =1 for x-component, 2 for y-component and 3 for z-component). 
The vectors ࢏࢛ are the unit vector i, j and k.The position vector of a site in TCP 
system is, thus, given by 
r = (n1+ ݐଵ௝ೖ) i + (n2 +   ݐଶ௝ೖ) j + ( ೎ೌ) (n3 +ݐଷ௝ೖ  ) k. 
With these notations, the EFG may be written as 
௭ܸ௭ = ∑ ܳ௝ଷ

௝ୀଵ ௝ܾ    
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Here ܳ௝ are charges given in equations (2) and (3) with ܳ௝equal to Zeffe for j=1, ܳ௧ for 
j=2 and Qe for j=3. The lattice sum is contained in ௝ܾ, where 

௝ܾ =
݁

଴ܽଷ߳ߨ4
 ௝ܤ

With 
 
  Bj= ∑ ∑ ∑ ∑ ଷேయమି( ேభమାேమమାேయమ)

(ேభమାேమమାேయమ)మ.ఱ
ெೕ
௝ೖୀଵ௡భ௡మ௡య     (6) 

 
It may be seen that the lattice sums given by equation (6) depend only upon axial ratio 
(c/a).  
 
 
Table 1: Crystallo-physical co-ordinates used in TCP unit cell 
 

 
The coefficients Bjare obtained by the lattice summations consistent with counting of 
sites,implied in LHS of equation (1), andconvergence of the lattice sum. 
The notorious lattice sums for evaluation of EFG pose problem in terms of 
convergence as also encountered in problems of Lorentz field of dipoles, normal 
modes of oscillator lattice, and spin wave theory of ferromagnetism. Much care has 
been taken in this direction by using various lattice sum methods like plane wise 
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summation, summation in spherical region, summation using Fourier transform 
andParseval formula[12], and Euler-Meclaurin series[13,14]. We have used 
hereaplane wise summation procedure; we consider a particular plane normal to c-
axis, that bears the fourfold symmetry here, sum over all the sites and then do the 
same for the next plane, and so on.All these sums are added together to give the lattice 
sum. 
The net EFG at nuclear site due to ionic and electronic sites can, thus, be calculated. 
The nucleus that is put now in the crystal environment at the origin interacts with the 
field gradient splitting its energy levels that is strongly dependent on the degree of 
wave function deviation from Free State. To account for this, one 
usesSternheimer’sfactor (1- ߛஶ) for ions and electrons [15]. Thus we use 
eq =(∑ ܳ௝ଷ

௝ୀଵ ௝) ( 1 - γ∞ )ܤ ೐
  రഏചబೌయ

 (7) 
The three dimensionless lattice sums Bj in the above equation are independent of the 
lattice parameter a, and depend only on the axial ratio c/a of the crystals with 
interfacial angles 90°. The charges Qjand anti-shielding factor [16] are dependent on 
element in question.  
 
 
Result of EFG for Stannum 
Stannum(II) crystallizes in a tetragonal close packed structure with lattice parameter 
a=3.81angstrom (=b) and c= 3.48 angstrom at 300 K of temperature. Its compliances 
[17]are  

ଵܵଵ = 16.3 × 10ିଵଶm2N-1 
ଵܵଶ = −3.6 × 10ିଵଶm2N-1 
ܵଷଷ = 14.1 × 10ିଵଶm2N-1 

Using these in equation (2) for doubly ionized stannum, we get 0.5895 - =ߜ. 
Equations (3) and (4) give electronic charges ܳ௘ = −0.5298 ݁and ܳ௧ = −0.0597 ݁. 
The lattice sums are obtained using equation (6) and EFG using equation (7). We 
have used γ∞   = -22.34 and get an EFG of 1.043× 10ଶଵVm-2.  
 
Temperature dependence of EFG 
Pure Snis ܦସ௛ଵଽ structuredtcp(sp-band) metal. Itoffers time differential perturbed 
angular distribution (TDPAD) and Mݏݏ̈݋bauer measurement of EFG at different 
temperatures within a relative error of 0.3.We have taken data for c/a at various 
temperatures of Sn (II) and computed the lattice sums. Lattice sums clearly indicate 
the decrement of EFG with rise in temperature. This is consistent at least qualitatively 
with experiments and expectations of Nishiyama and Christiansen[18]. Following is 
the table of lattice sum for (c/a) at several temperatures in Sn (II). 
 
Table2: Temperature and computed EFG of Sn-II 
Temperatu
re (K) 

Axial 
ratio 

Ionic 
lattice 
sum(B1) 

Electronic lattice sum 
B2B3 

EFG 
(computed) 
(×
10ଶଵVm-2) 
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33 0.5455
7 

15.1412 -10.4836     -12.4122 4.646 

106 0.5463
4 

15.0504 -10.4651     -12.3794 4.590 

148 0.5467
5 

15.0019 -10.4553     -12.3611 4.558 

166 0.5470
6 

14.9653 -10.4478     -12.3477 4.536 

178 0.5471
5 

14.9558 -10.4459   - 12.3441 4.529 

180 0.5472
1 

14.9479 -10.4440    -12.3411 4.525 

186 0.5473
3 

14.9347 -10.4410-12.3360 4.458 

194 0.5474
6 

14.9185 -10.4380     -12.3300 4.449 

200 0.5474
5 

14.9202 -10.4388    -12.3309 4.447 

212 0.5476
8 

14.8920 -10.4331     -12.3208 4.430 

300 0.913 0.64218 -0.62183   -1.56437 1.043 
 
These data may be plotted to directly view main features. Plots of EFG in units of 
10ଶଵV mିଶagainst the temperature in kelvin up to 212 K are as in the diagram.   

 
 
The left plot uses data from 33 K to 178 K; deviations in curvature are observed after  
148 K. These are more pronounced (right side plot) at higher temperatures. 
 
 
Conclusion 
The value of electric field gradient at nuclear site belonging to doubly ionized 
stannum in metallic environment of tcp lattice is calculated and temperature effect 
isobserved consistent with experimental behavior. 
 

Figure 1 : Plot of eq (T) 
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