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Abstract 
 

Fabry-Pérot interferometers or etalons are used in optical modems, 
spectroscopy, lasers, and astronomy.In this paper we used the coupled 
mode equation to design the Fabry–Pérot filter and study the 
picosecond dispersion, where, the picosecond is 10−12 of a second. That 
is one trillionth, or one millionth of one millionth of a second, or 0.000 
000 000 001 seconds.Coupled mode analysis is widely used in the field 
of integrated optoelectronics for the description of two coupled waves 
traveling in the same direction. The program is written in MATLAB to 
simulate and analysis the Fabry–Pérot properties. 
 
Index Terms: Fabry–Pérot filter, Coupled ModeTheory, Coupling 
Coefficient, Finesse. 

 
 
1. Introduction 
In optics, a Fabry–Pérot interferometer or etalon is typically made of a transparent 
plate with two reflecting surfaces, or two parallel highly reflecting mirrors. 
(Technically the former is an etalon and the latter is an interferometer, but the 
terminology is often used inconsistently.) Its transmission spectrum as a function of 
wavelength exhibits peaks of large transmission corresponding to resonances of the 
etalon. It is named after Charles Fabry and Alfred Perot. "Etalon" is from the French 
étalon, meaning "measuring gauge" or "standard". 

The resonance effect of the Fabry–Pérot interferometer is identical to that used in a 
dichroic filter. That is, dichroic filters are very thin sequential arrays of Fabry–Pérot 
interferometers, and are therefore characterised and designed using the same 
mathematics. 
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Etalons are widely used in telecommunications, lasers and spectroscopy to control and 
measure the wavelengths of light. Recent advances in fabrication technique allow the 
creation of very precise tunable Fabry–Pérot interferometers [1,2]. 
 
 
2. Coupled Mode Theory and Computing the Coupling Coefficient 
and Dispersion 
Coupled mode analysis is widely used in the field of integrated optoelectronics for the 
description of two coupled waves traveling in the same direction (co-directional 
coupling) or in the opposite direction (contra directional coupling). Indeed, it is the 
method of choice for weakly index-modulated systems like waveguides in general. For 
such systems the coupled-mode approach represents an excellent approximation to the 
exact problem. Additionally, a lot of powerful analytical design tools based on the 
coupled mode equations have been developed. They allow the design of various types 
of structures and the fast calculation of their spectral response characteristics. On the 
other hand, for the design of optical filters and mirrors, which are composed of discrete 
layers with large differences in the refractive indices (e.g., dielectric multilayer 
coatings), the coupled-mode approach is hardly considered. Its applicability seems to 
be questionable because the assumption of a small perturbation is violated in the case 
of large index discontinuities. 

In fact, for such systems the index difference is of the same order of magnitude as 
the average and effective refractive index, respectively [3]. 

In coupled mode equations, 



2

n
 defines the coupling coefficient for the first 

order refractive-index variation n  and  is the design wavelength. Using coupled 
wave equations, the boundary conditions can be written as: 

)()()0()0( 21 LErLEandErE fbbf  . 
where 1r  and 2r  are the reflectivity's for the electric field at 0z  and Lz  , 
respectively [4]. 

When the evanescent wave in the dielectric layer is reflected by a non-absorbing 
metal, the group delay time is negative when the electric field vector is in the plane of 
incidence and positive when the electric field vector is perpendicular to the plane of 
incidence. Similarly, a frustrated Fabry-Perot interferometer shows negative group 
delay times for angles of incidence greater than specific p-wave and s-wave critical 
angles [5]. 

The group delay (GD) is defined as the negative of the derivative of the phase 
response with respect to frequency [6]. In physics and in particular in optics, the study 
of waves and digital signal processing, the term delay meaning: the rate of change of 

the total phase shift with respect to angular frequency [7,8]: 



d
dGD  .Through a 

device or transmission medium, where  is the total phase shift in radians, and  is the 
angular frequency in radians per unit time, equal to f2 , where f  is the frequency 
(hertz if delay is measured in seconds).The group delay dispersion (GDD) can be 
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determined by the derivative of the delay with respect to the angular frequency  and 

is given by [7,8]:
d

dGDGDD  . 

 
 
3. Mathematical Model for the Fabry-Perot Filter 
The heart of the Fabry–Pérot interferometer is a pair of partially reflective glass optical 
flats spaced millimeters to centimeters apart, with the reflective surfaces facing each 
other. (Alternatively, a Fabry–Pérotetalon uses a single plate with two parallel 
reflecting surfaces.) The flats in an interferometer are often made in a wedge shape to 
prevent the rear surfaces from producing interference fringes; the rear surfaces often 
also have an anti-reflective coating [1]. 

In a typical system, illumination is provided by a diffuse source set at the focal 
plane of a collimating lens. A focusing lens after the pair of flats would produce an 
inverted image of the source if the flats were not present; all light emitted from a point 
on the source is focused to a single point in the system's image plane. In the 
accompanying illustration, only one ray emitted from point A on the source is traced. 
As the ray passes through the paired flats, it is multiply reflected to produce multiple 
transmitted rays which are collected by the focusing lens and brought to point A' on the 
screen.  

 

 
 

Figure 1: Fabry–Pérot interferometer, using a pair of partially reflective, slightly 
wedged optical flats. The wedge angle is highly exaggerated in this illustration;  
only a fraction of a degree is actually necessary. Low-finesse versus high-finesse 
images corresponds to mirror reflectivities of 4% (bare glass) and 95% [1]. 

 
The complete interference pattern takes the appearance of a set of concentric rings. 

The sharpness of the rings depends on the reflectivity of the flats. If the reflectivity is 
high, resulting in a high Q  factor, monochromatic light produces a set of narrow bright 
rings against a dark background. A Fabry–Pérot interferometer with high Q  is said to 
have high finesse [1]. 

The varying transmission function of an etalon is caused by interference between 
the multiple reflections of light between the two reflecting surfaces. Constructive 
interference occurs if the transmitted beams are in phase, and this corresponds to a 
high-transmission peak of the etalon. If the transmitted beams are out-of-phase, 
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destructive interference occurs and this corresponds to a transmission minimum. 
Whether the multiply reflected beams are in phase or not depends on the wavelength   
of the light (in vacuum), the angle the light travels through the etalon  , the thickness 
of the etalon   and the refractive index of the material between the reflecting surfaces
n . 

 

 
 

Figures 2: A Fabry–Pérot etalon. Light enters the etalon and  
undergoes multiple internal reflections [1,2]. 

 
The phase difference between each succeeding reflection is given by  [1]: 



 cos22

n







 
…(1) 

If both surfaces have a reflectance R , the transmittance function of the etalon is 
given by [1]: 
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…(2) 

 

where: 2)1(
4

R
RF


 , is the coefficient of finesse. 

Maximum transmission 1eT  occurs when the optical path length difference 
cos2nl  between each transmitted beam is an integer multiple of the wavelength. In 

the absence of absorption, the reflectance of the etalon eR is the complement of the 
transmittance, such that 1 ee RT . The maximum reflectivity is given by [1]: 
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…(3) 

 
and this occurs when the path-length difference is equal to half an odd multiple of 

the wavelength.The wavelength separation between adjacent transmission peaks is 
called the free spectral range ( FSR ) of the etalon,  , and is given by [1]: 



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where 0  is the central wavelength of the nearest transmission peak. The FSR  is 
related to the full-width half-maximum, , of any one transmission band by a quantity 

known as the finesse:
)/1arcsin(2 F

f 





 .This is commonly approximated for 

5.0R  by [1]:
R

RFf



12

2
1

 Etalons with high finesse show sharper transmission 

peaks with lower minimum transmission coefficients. In the oblique incidence case, 
the finesse will depend on the polarization state of the beam, since the value of R , 
given by the Fresnel equations, is generally different for p  and s  polarizations. 

A Fabry–Pérot interferometer differs from a Fabry–Pérot etalon in the fact that the 
distance   between the plates can be tuned in order to change the wavelengths at 
which transmission peaks occur in the interferometer. Due to the angle dependence of 
the transmission, the peaks can also be shifted by rotating the etalon with respect to the 
beam [1,2]. 

Two beams are shown in the diagram above. One of which 0T  is transmitted 
through the etalon, and the other of which 1T  is reflected twice before being 
transmitted. At each reflection, the amplitude is reduced by R  and the phase is 
shifted by , while at each transmission through an interface the amplitude is reduced 
by T . Assuming no absorption, conservation of energyrequires 1 RT . In the 
derivation below, n  is the index of refraction inside the etalon, and 0n  is that outside 
the etalon. The incident amplitude at point a  is taken to be one, and phasors are used 
to represent the amplitude of the radiation. The transmitted amplitude at point b will 
then be: cos/

0
ikTet  , where  /2 nk  is the wavenumber inside the etalon and  is 

the vacuum wavelength. At point c the transmitted amplitude will be:  cos/32Re ikiT   
[1,2]. 

The total amplitude of both beams will be the sum of the amplitudes of the two 
beams measured along a line perpendicular to the direction of the beam. The amplitude 
at point b  can therefore be added to an amplitude 1t equal in magnitude to the 
amplitude at point c , but retarded in phase by an amount 00k where  /2 00 nk  is 
the wavenumber outside of the etalon. Thus: 00cos/32

1
 ikikiRTet   , where 0  is:

00 sintan2   . 
Neglecting the 2 phase change due to the two reflections, the phase difference 

between the two beams is: 00cos
2


 kk



 . The relationship between   and 0  is 

given by Snell's law: 00 sinsin  nn  . So that the phase difference may be written:
 cos2 k . To within a constant multiplicative phase factor, the amplitude of the 

mth  transmitted beam can be written as: imm
m eTRt  .The total transmitted amplitude 

is the sum of all individual beams' amplitudes: 









00 m

imm

m
m eRTtt  .The series is a 
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geometric series whose sum can be expressed analytically. The amplitude can be 

rewritten as: i

Tt
Re1

 . 

The intensity of the beam will be just t  times its complex conjugate. Since the 
incident beam was assumed to have an intensity of one, this will also give the 
transmission function [1,2]: 

cos21 2

2
*

RR
TttTe 


 

…(5) 

 
 
4. Simulation Result and Discussion 
MATLAB is a great and easy tool to use to simulate optical electronics. All the results 
below are got after following these steps: 

1. Calculate the transmittance function, finesse and contrast factor of Fabry-Perot 
filter. 

2. Implementation of the Transfer Matrix method for solution of Coupled Mode 
equations. 

3. Found the phase difference to calculate the amplitude and power transmission 
coefficient of Fabry-Perot filter. 

4. Calculate the delay and dispersion of Fabry-Perot filter in picoseconds units. 
5. Found the POLYFIT for the delay and dispersion results. 
 
Figure 3is about the transmitted intensity versus the interference order. It shows the 

transmittance function for different values of F . Instead of  , the corresponding 
interference order 


2  is noted. The mean, median, mode and the standard deviation 

(STD) are tablets in table .1 for five different data. Fig.4is about the finesse and the 
mirror reflectivity. The finesse is an important parameter that determines the 
performance of a Fabry-Perot filter. Conceptually, finesse can be thought of as the 
number of beams interfering within the Fabry-Perot cavity to form the standing wave. 
The primary factor that affects finesse is the reflectance R  of the Fabry-Perot mirrors, 
which directly affects the number of beams circulating inside the cavity. The mean= 
24.87, median= 10.63, mode= 4.441 and the STD= 42.97. In Figure 5 we found 
another important factor in the design of the filter is the contrast factor which is 
defined primarily as the ratio of the maximum to minimum transmission.Figure 6 
shows finesse against contrast factor. 

Figure 7 represents the relationship between the amplitude transmission and the 
wavelength. The mean= 0.0003402, median= -0.002776, mode= -0.9718 and the 
STD= 0.3977. Figure 8shows the power transmission versus the wavelength. The 
mean= 0.3157, median= 0.1858, mode= 0.0006045 and the STD= 0.3178. Finally, 
Figure 9 and Figure 10showthe delay and dispersion versus the wavelength after using 
the transfer function, coupled mode equation andthen POLYFIT function. The 
theoretically designed delay has a small oscillations around ps02106.0  are visible. 
Of course, the same behavior can be found for the dispersion. The average dispersion 
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is around 2001241.0 ps .The analysis results for the mean, median, mode and the 
standard deviation STD are tablets in table .2 fordelay and dispersion. 

 
 

Figure 3: Shows the transmitted intensity versus the interference orderfor  
various values of transmittance of thecoatings.Not that the peaks get narrower. 

 
 

Figure 4: Finesse versus the mirror reflectivity. Not that the coefficient of finesse 
increases. When peaks are very narrow in Figure 3, light can be transmitted  

only if the plate separation  , refractive index n , and the wavelength  
  satisfy the precise relation:  /cos2 n . 

 
Figure 5: Contrast factorand the mirror reflectivity.The mean= 247.9,  

median= 11.21, mode= 1.778 and the STD= 1118. 
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Figure 6: Finesse against contrast factor.Very high finesse factors require 
highlycontrast factor. These mean, when finesse increase, contrast factor increase also. 

 
 

Figure 7: The relationship between the amplitude transmission and the  
wavelength. The amplitude values are around (-0.9718)-(0.9704). 

 
 

Figure 8: Power transmission versus the wavelength. 
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Figure 9: The relationship between the delay and the wavelength.  
The average fit delay has small oscillationsaround ps0161.0 . 

 

 
 

Figure 10: The relationship between the dispersion and the wavelength.The average 
dispersion is in excellent agreementwith 2001241.0 ps . Also, the average fit 

dispersion is in great agreement with 2005146.2 psE  . 
 

Table 1: Thestatistical analysis: mean, median, mode and the standard deviation for 
Fabry-Perot transmittance function. 

 Transmittance Function 
1st 2nd 3rd 4th 5th 

Mean 0.5519 0.4237 0.2964 0.1732 0.01103 
Median 0.471 0.3041 0.1585 0.05573 0.0002237 
Mode o.2868 0.1648 0.0784 0.02595 0.000101 
STD 0.2447 0.2736 0.2769 0.2464 0.07351 
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Table 2: Thestatistical analysis: mean, median, mode and the standard deviation  
for the delay and dispersion after and before using POLYFIT function. 

 
 Delay ps  Dispersion

2ps  Fit Delay ps  Fit Dispersion
2ps  

Mean -0.01603 -2.137e-005 -0.01603 -2.137E-005 
Median -0.01602 -2.132e-005 -0.01605 -2.14E-005 
Mode -0.02106 -0.0001241 -0.0161 -2.146E-005 
STD 0.000854 1.738e-005 6.181e-005 9.194E-008 

Conclusion 
This part has presented an intense conclusion on theoretical design of the Fabry-Perot 
filter. The paper began with a brief historical background. The Fabry-Perot 
interferometer, simply referred to as the Fabry-Perot, is an important application of 
multiple wave interference in optics. It consists of two partially reflecting surfaces 
aligned with each other in such a way that many waves of light derived from the same 
incident wave can interfere. The resulting interference patterns may be used to analyze 
the spectral character of the incident beam.This theoretical design study including 
FSR, finesse and contrast, used to assess the performance of the Fabry-Perot filter were 
discussed.Low cost practical cavity will always have deviation from the standard 
analytical model. An attempt is made to analyze the factors that control and affect the 
performance and the design of the Fabry-Perot filter versus the parameter that control 
those factors. Very high finesse factors require highly reflective mirrors.A higher 
finesse value indicates a greater number of interfering beams within the cavity, and 
hence a more complete interference process. The figure show that the linear increase in 
finesse with respect to contrast increase. The equation and the plots also show that a 
linear increase in finesse, translates into a quadratic to each other.The average fit delay 
and dispersion has small oscillations around the design wavelength. 
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