Synthesis and characterization of ZnO nano particles using Gigantic Swallow Wort leaves using by green chemical reduction method

Mr. Pankaj Shende¹, Syed Tanveer² and A. Nagesh³

Lecturer in Department of Mineral Processing Engineering, EIT, MAI-NEFHI, ASMARA, ERITREA Post Box No. 12676
Ass.Prof. of physics, Brindavan Institute of Technology & Science, Peddatekur (V), Kurnool 518218
Ass.Prof. of physics, EIT, MAI-NEFHI, ASMARA, ERITREA, Post Box No. 12676.

Abstract

Present study focuses on the extraction of ZnO nanoparticles by Green chemical reduction method from the bio components of leaves extract of Gigantic Swallow Wort. X-Ray Diffraction (XRD), FT-IR Spectroscopy characterizations was done for synthesized ZnO nanoparticles. X-ray diffraction studies showed that the particles are hexagonal in nature

Keywords-FTIR, Green Chemical reduction method. XRD

1. INTRODUCTION
Semiconductors with dimensions in the nanometer realm are important because their electrical, ical and chemical properties can be tuned by changing the size of particles. But Zinc oxide (ZnO) is a wide band gap (3.37 eV) and high excitation binding energy of (60 meV) at room temperature [1, 2] and has unique optical and as well as excellent thermal and chemical stability [3]. ZnO nanoparticles have very large surface area with potentially low manufacturing cost. The shape and size of nano materials immensely affect their physical and chemical properties. Among the metal oxide nanoparticles, zinc oxide is interesting because it has vast applications in various areas such as optical, piezoelectric, magnetic, and gas sensing. Besides these properties, ZnO nanostructure exhibits high catalytic efficiency, strong adsorption ability and are used more and more frequently in the manufacture of sunscreens [4], ceramics and rubber processing, wastewater treatment, and as a fungicide [5, 6]. In fact, n-ZnO usage may overtake nano-titanium dioxide (nTiO₂) in the near future as it can absorb both UV-A and UV-B radiation while nTiO₂ can only block UV-B, and
thereby offering better protection and improved opaqueness [5]. Several physical and chemical procedures have been used for the synthesis of large quantities of metal nanoparticles in relatively short period of time. Chemical methods lead to the presence of some toxic chemicals adsorbed on the surface that may have adverse effects in medical application [7]. Currently, plant-mediated biological synthesis of nanoparticles is gaining importance due to its simplicity, eco-friendliness and extensive antimicrobial activity [8, 9]. It has wide applications in different industries including photodetectors[10], sensors [11], solar cells [12], antibacterial or medical products [13-15], cosmetics [16], etc. ZnO nanoparticles can be synthesized by various chemical for physical methods such as precipitation [17], sol-gel [18], solvo/hydrothermal [19], chemical vapor deposition [20], spray pyrolysis [21], etc. Biosynthesis of zinc oxide nanoparticles by plants such as Aloe vera [22] and gold nanoparticles by alfalfa [23, 24], Cinnamomum camphora [25], neem [26], Emblica officinalis [27], lemongrass [28] and tamarind [29] have been reported. To the best of our knowledge, the present study is the first report on ZnO nanoparticles synthesized using Gigantic Swallow Wort leaves

2. MATERIALS AND METHODS
A. Materials
Zinc nitrate and utilized ingredients with analytical grade chemicals were purchased from Merck and used without further purification. Distilled and deionized water was used in this work. The leaves of Gigantic Swallow Wort (Figure 1) plant collected from our surround places Zinc nitrate is a crystalline and inorganic chemical compound with the formula Zn(NO₃)₂. Zinc Nitrate is soluble in both alcohol and water. The structure of zinc nitrate is shown in figure 1.

![Figure 1 structure of zinc nitrate](image)

B. Preparation of leaf extract
For the preparation of leaves extract fresh leaves were collected from Gigantic Swallow Wort plants (figure 2). The leaves were washed several times with water to remove the dust particles and then sun dried to remove the residual moisture.
The dried leaves were cutted and grinded for powder. Then taking 20 gm of dried Gigantic Swallow Wort leaves boiled in 250 ml of deionised water for one hour at 70-80 °C. The mixture solution cooled at room temperature. The leaves extract (Figure 3) filtered by using watts man filter paper.

C. Green synthesis of ZnO nanoparticles using leaf Extract of Giganticon SwallowWort Plant.
For the ZnO nanoparticles synthesis, 100 ml of GiganticSwallowWort leaf extract was taken boiled to 60-70 °C. using magnetic stirrer heater. 5 grams of Zinc Nitrate was
added to the solution. This mixture is then boiled until it reduced to a deep yellow coloured paste. This paste was then collected in a ceramic crucible and heated in an air heated furnace at 300 degree Celsius for 2 hours. A light yellow coloured powder was obtained and this was carefully collected and packed for characterization purposes.

3. RESULTS AND DISCUSSION

A. FTIR Spectra analysis
The FTIR spectrum of ZnO nanoparticles is shown in Figure 4. The IR spectrum of transmittance was taken by using a Bruker FT-IR instrument operating at a resolution of 2000-400 cm⁻¹. In IR spectra, the absorption peak at 473.33 cm⁻¹ indicates the presence of ZnO nanoparticles. The sharp characteristic peaks are also observed in FTIR spectrum of ZnO nanoparticles synthesized from Zinc Nitrate suggesting the high crystalline nature of ZnO nanoparticles.

![FTIR spectrum of ZnO nanoparticles](image)

Figure 4. FTIR spectrum of ZnO nanoparticles

B. X-ray diffraction analysis of ZnO nanoparticles.
XRD spectrum of the prepared ZnO nanoparticles was carried out using XRD for 20 values ranging from 20 to 70° using CuKα radiation at λ = 1.5406Å. In ZnO, the 20 values with (hkl) plane at 33.5° (100), 35.2° (002), 37.1° (101), 47.4° (102), 57.5° (110), 62.8° (103) and 67.8° (201) were observed. The spectrum (Figure 5.) confirmed the hexagonal zinc oxide structure for ZnO nanoparticles. The average particle size (D) of synthesized nanoparticles was calculated using the well known Scherrer formula.
Synthesis and characterization of ZnO nanoparticles

4. CONCLUSION
ZnO NPs was synthesized by the green chemical reduction method using Gigantic-Swallow-Wort leaf extract is simple and cost effective. The as prepared ZnO nanoparticles were characterized using several techniques such as XRD and FTIR. The FT-IR studies showed an absorption peak at 473.33 cm$^{-1}$ (Zn-O linkage) which indicated the formation of zinc oxide nanoparticles. From XRD analysis, the structure of the ZnO particles is confirmed as hexagonal with average particle size 28.38 nm.

REFERENCES

