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Abstract 

Determinism is non-trivial in quantum mechanics as the interaction of the 

measurement apparatus with the measured system is central to its formulation. 

The observing apparatus disturbs the observed system in an unpredictable and 

uncontrolled manner that sets limitation on the precision of the measurement 

which is the feature of the well-known Heisenberg Uncertainty Principle. In an 

ideal measurement also known as ‘projective’ measurement, the relative shifts 

in the pointer corresponding to different eigenstates of ‘X’ are large compared 

to the initial uncertainty in the pointer’s position. This results in an 

unambiguous separation of the overlap of different eigenstates of ‘X’ known 

as the ‘collapse of the wave function’. This is the idea underlying a strong 

measurement following the von Neumann interaction model for the 

measurement of the observable ‘X’. The collapse of the wave function 

precludes the simultaneous measurement of the non-commuting observables 

such as position and momentum. 

In a seminal work Aharanov, Albert and Vaidman (1988) proposed a new 

technique known as ‘weak measurements’ which entailed weakening the 

interaction between the measuring apparatus and the measured system to 

prevent the collapse mentioned above. The technique involved pre-selection, 

weak interaction and post-selection to give rise to ‘weak value’ of an 

observable. These weak values are complex and possess interesting features. 

We shall review the technique in this paper to propose schemes to 

simultaneously measure non-commuting variables. We shall show that, weak 

values may be used to reconstruct the wave function ‘ψ’ of the quantum 

system. This method is the quantum state tomography using weak 

measurements.  
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INTRODUCTION 

Measurement is very profound in the formulation of physical laws. One can measure 

the initial state of the particle viz. the position and the momentum to a very high 

precision depending on the measuring device.  The time evolution in the Hamiltonian 

or the Lagrangian formulation leads to determinism in classical mechanics.  However, 

things are quite different in quantum mechanics. In the quantum realm of things, the 

interaction between the measuring apparatus and the measured system disturbs the 

system in an unpredictable and uncontrolled manner leading to decoherence or 

collapse of the wave function. This renders the simultaneous measurement of non-

commuting observables untenable and non-trivial. Traditionally, this is known as the 

projective measurement which is consistent with the Heisenberg Uncertainty 

Principle. The uncertainty is a consequence of this intrinsic feature of quantum 

measurement and does not depend on the precision of the measuring device.  In 1988, 

Aharanov, Albert and Vaidman conceived the idea of ‘weak measurement’ in a 

seminal paper [1]. The proposed idea was reviewed critically by Duck, Stevenson and 

Sudarshan [2] and applied extensively in different experiments as a laboratory tool 

[3], [4], [5], [6], [7]. The idea provided a new kind of value for a quantum variable 

known as the ‘weak value’ of an observable. In this paper we examine the interesting 

features of weak measurement in the light of quantum measurement and study its 

application in quantum tomography.  

 

WEAK MEASUREMENTS 

To start with, let us understand the process of quantum measurement. The interaction 

of the measuring pointer with the system is central to the formulation of measurement 

theory in quantum mechanics. Following von Neumann’s interaction model for the 

measurement of an observable ‘A’, the measurement procedure consists of coupling 

the observable A of the quantum system to a measuring pointer by a coupling 

Hamiltonian  = g(t)·P·A and let Q, P refer to the position and conjugate momentum 

of the pointer respectively, g(t) is a function with compact support near the time of the 

measurement. Hence the strong interaction between the device and the system lasts 

for so short a time that the changes of the device and the system under observation 

that would have taken place in the absence of interaction can be neglected. Thus, at 

least while the interaction is taking place we can neglect the parts of the Hamiltonian 

associated with the device alone and with the observed system alone and we need to 

retain only the part of the Hamiltonian representing the interaction. The measurement 

pointer is initially a gaussian wave function centered at zero. 

=φ (𝑥) =       (1) 
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where σ  is the standard deviation of the probability distribution . 

Let the quantum system be prepared in some quantum state . We consider an 

ensemble of systems for the purpose of measurement and therefore the state 

preparation is also termed as pre-selection. Under the action of the coupling 

Hamiltonian, the whole system of the pointer and the quantum system evolves to  

      =     (2) 

 =      …      (3) 

The measurement process consists of shifting the mean position of the pointer by an 

amount proportional to the expectation value of the observable  after the 

interaction. In an ideal measurement, the relative shifts corresponding to the different 

eigenvalues of A are large compared to the initial uncertainty in the pointer’s position. 

This results in unambiguous separation of the overlap of the different eigenstates of A 

known as ‘decoherence’ or the ‘collapse of the wave function’. Thus it is not possible 

to measure simultaneously the non-commuting variables using an ideal measurement 

technique. This is the wisdom underlying conventional measurement or strong 

measurements. This for an ideal measurement: (i) The measurement always produces 

one of its eigenvalues an . (ii) The probability of its outcome an  is  where  

expressed in terms of its eigenstates. Thus for a projective 

measurement, the pointer is left in a state consisting of widely separated spikes each 

centered on one of its eigenvalues an. In the case of the weak measurement, we may 

approximate it to a single broad gaussian peaked at the mean value of as the 

interaction between the apparatus and the quantum system is considered weak. 

 Immediately, after the weak measurement of A, one makes a strong 

measurement by restricting to the sub ensemble of system states that are found to be 

in   This procedure of projecting out the part of the state is known as post-

selection. Such a ‘weak’ measurement technique results in expectation values which 

are remarkably different than in strong or projective measurements. On post-selecting 

in state  the measurement state will be left in the state as follows, 

       

=      …     (4) 

On normalizing the state and considering only the terms up to the first order of g we 

obtain, 

 =     …      (5) 

The expression     is the weak value of  .     (6) 
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The expectation value of position    of the pointer is calculated as  

  =  

=              (7) 

Now the first term is zero. The other terms are rewritten as, 

 

We use the integrals dx =    and dx =    to evaluate 

= 0.  Finally we obtain, 

= gt  Real part of         (8) 

Similarly the expectation value of momentum is calculated as  

=  Im         (9) 

The weak value of the observable may be expressed in terms of the two expectation 

values of the pointer, 

  Re  + i Im . 

The weak value is a complex number and we have seen that the real part gives the 

position of the pointer and the imaginary part gives us the momentum.  It was also 

shown that the weak values can lie far beyond the range of the observable’s 

eigenvalues [1].This is known as weak value amplification and is used effectively in 

several applications [3], [4], [5]. 

 

DETERMINING THE STATE OF THE QUANTUM SYSTEM 

The above discussion facilitates the measurement of the non-commuting variables viz. 

position and momentum with the weak measurement technique. The real part and the 

imaginary part of the weak value corresponds to the variable and its complementary 

counterpart.  This enables us to measure the wave function ψ of the quantum system 

which represents the state of the system. At each x, the observed position and 

momentum shifts of the measurement pointer are proportional to Re  and 

Im . Scanning the weak measurement through x thus entails re-construction of 

the wave function by the simultaneous measurement of non-commuting variables. 

This is the quantum state tomography using weak measurements. 
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CONCLUSIONS 

The weak values are complex nature with the real and imaginary part having physical 

significance [8],[9]. Interesting Quantum effects arise on appropriate Post-Selection.   

This have been  illustrated for the measurement of position and momentum for a 

quantum system. Further, this facilitates the simultaneous measurement of non-

commuting variables which entails reconstruction of the wave function [10]. The 

weak measurement holds potential for quantum tomography with enhanced photon 

counting using appropriate post-selection and weak value amplification. 
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