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Abstract 

In this paper, we studied the Optical Transfer Function (OTF) in incoherent 

optical imaging system with Gaussian amplitude apodisation filter. One of the 

important corollaries of OTF namely, Equivalent Pass-band (EP) is studied. 

Numerical results are presented different values of spatial frequency and 

apodised parameter. 
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1. INTRODUCTION 

The Optical transfer function (OTF) in an optical system is a mathematical entity 

describing how well the subject is transferred into an image via lens. This is a 

complex-valued function describing the response of an imaging system as a function 

of spatial frequency. OTF can be resolved into the magnitude and phase components. 

The magnitude of complex OTF is Modulation Transfer Function (MTF) and phase is 

known as Phase Transfer Function (PTF). That is, OTF= MTF exp ( iPTF).  A perfect 

optical system will have MTF =1 and PTF =0 for all spatial frequencies. Modulation 

transfer function describes the response of image of an optical system decomposed 

into sine waves.  Conventionally, the OTF is normalized to unity for zero spatial 

frequency.  In some cases, it is better to consider the un normalized OTF which gives 

the absolute value of the image signal. In general, the OTF is complex-valued, but it 

as real-valued in symmetrical optical systems. The OTF is the Fourier transform of 

the incoherent point spread function. The concept of OTF can be used in Confocal 

Microscopy and image scanning microscopy. The earliest published work in the core 

of OTF is due to Mackenzie [1].  In this work, the effect of the recording slit width on 
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high frequency response is studied. The measurement of OTF by auto-correlation of 

the pupil function was suggested by Hopkins [2]. OTF of diffraction –limited circular 

apertures have been studied by Barakat and Houston [3]. Srimannarayana [4] 

et.al.studied the OTF with Straubel filters. Ramanatham [5] et.al, studied imaging 

characteristics of optical system with Kaiser apodisation filters. Dobryna Zalvindea 

[6] et.al, analyzed the optical transfer function as image quality parameters of optical 

elements by employing Wigner distribution function. OTF shaping and depth of focus 

with phase filters is studied by David Mendlovic and Dina Elkind [7]. L.E.Helseth [8] 

investigated the OTF of three dimensional display systems. OTF derived from solar 

adaptive optical system data is studied by Friedrich Woger [9].To the best of our 

knowledge, no one has analyzed the OTF of symmetrical optical system apodised 

with Gaussian filter. In this paper, the same is studied. 

The rest of the paper is organized as follows. In the section 2, mathematical 

expression for Optical Transfer Function (OTF) with incoherent light is derived. In 

the section 3, numerical results are presented, finally conclusion is given in section 4. 

 

2. FUNDAMENTALS OF IMAGE FORMATION IN INCOHERENT LIGHT 

A schematic representation of an image forming optical system in incoherent 

illumination is depicted in Fig 1. 

 

Fig 1: Schematic representation of an optical system for imaging an incoherently 

illuminated object. 

 

The object and image plane are represented by the co-ordinates (𝑢, 𝑣)and (𝑢′, 𝑣′) 

respectively with their origins at O and𝑂′. The entrance and exit pupils of the optical 

systems are shown on the axis E and E’ .The radius of the reference sphere in the 

object space is represented as OE. The frequency of the plane    is shown at the point 

F on the optical axis and is assumed to be co-incident with exit pupil 𝐸′ .A ray of light 

coming from the axial point O in the object plane makes an angle  with the optical 

axis and it intersects the reference sphere in the object space at a height h. This ray 

from O converges to 𝑂′  in the image plane makes an angle ' with the optical axis 

t 
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and it intersects the reference sphere in the object space at a height ℎ′. Fractional and 

reduced co-ordinates of the points and planes of the optical system are defined as 

follows. The advantage of the transferring the actual co-ordinates into these 

dimensionless diffraction variables is that it takes care of the problem of 

magnification produced in the final image. The fractional co-ordinates of points on 

the entrance and exit pupil of image forming system are defined as  
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where (a, b) and(𝑎′, 𝑏′) are the actual Cartesian co-ordinates on the entrance and exit 

pupils, respectively, R and 𝑅′ are the respective radii of entrance and exit pupils. The 

advantage of this transformation is that normal infinite limits of integration in the 

Fourier transform will be reduced to finite limits. A system with circular symmetry 

will be considered throughout this work within the aperture limit 𝑥2 + 𝑦2 = 1, so that 

any part of the wavefront which lies outside the circle of unit radius is not transmitted 

by the optical system. The reduced co-ordinates (u, v) and(𝑢′, 𝑣′) of the points in the 

object and image planes, respectively are defined as 
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where )','(),(  and  are the actual cartesian co-ordinates, 
2𝜋

𝜆
 and 𝑛𝑠𝑖𝑛𝛼 are 

propagation constant factor of the illuminating beam and the numerical aperture of the 

objective of the optical systems respectively. While n and 𝑛′ are the refractive indices 

of the object and image space respectively .It is assumed that the wave front 

associated with a disturbance at O which lies in the object reference sphere has unit 

amplitude and zero phase. The complex amplitude in the image plane of a point 

source situated at the origin (0, 0) in the object plane is given by  

𝐹(𝑢′, 𝑣′) = ∬ 𝑔(𝑥, 𝑦) exp{−2𝜋𝑖 (𝑢′𝑥, 𝑣′𝑦)} 𝑑𝑥 𝑑𝑦  .

+∞

−∞

                    … (4) 

where g(x,y) function is the pupil function which is finite within the circular aperture 

and zero outside. Thus the limits −∞ 𝑡𝑜 + ∞ in the above general integral are 

restricted by the finite extent of the limiting aperture. The image intensity of a point 

source situated at the point (0, 0) in the object plane is given by  

𝐺(𝑢′, 𝑣′) = |𝐹(𝑢′, 𝑣′)|2                                                                                … (5) 
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In many cases, G (u’, v’) is not known explicitly. Using the condition of shift 

invariance, the diffraction image of a point situated at (u, v) in the object plane, is 

given by 𝐺(𝑢′ − 𝑢 , 𝑣′ − 𝑣). The convolution of the object intensity distribution and 

the intensity point spread function gives the resultant intensity 𝐵′(𝑢′, 𝑣′) at a point 

(𝑢′, 𝑣′) in the image plane, thus  

        



 dudvvvuuGvuBvuB )','(),()','('   ,                                             … (6)   

where B (u, v) is the object intensity distribution at (u, v) in the object plane. Now, the 

inverse Fourier transform of the intensity of PSF in the (s, t) is given by  

ℎ(𝑠, 𝑡) = ∬ 𝐺(𝑢′, 𝑣′) exp{2𝜋𝑖(𝑠𝑢′ + 𝑡𝑣′)} 𝑑𝑢′𝑑𝑣′    .                          … (7)
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The co-ordinates (s, t) represent the arbitrary point in the spatial frequency plane. 

From the equs (4) – (7), we have  

𝐵′(𝑢′, 𝑣′) = ∬ ℎ(𝑠 , 𝑡 )𝑏(𝑠, 𝑡) exp{2𝜋𝑖 (𝑠𝑢′ +  𝑡𝑣′)} 𝑑𝑠 𝑑𝑡  .              … (8)

+∞

−∞

 

The inverse Fourier transform of 𝐵′(𝑢′, 𝑣′) is given by  

𝑏′(𝑠, 𝑡) = ℎ(𝑠, 𝑡)𝑏(𝑠, 𝑡)                                                                               … (9) 

So that  

ℎ(𝑠, 𝑡) =
𝑏′(𝑠, 𝑡)

𝑏(𝑠, 𝑡)
                                                                                     … . (10) 

h(s, t) is a spatial frequency spectrum of 𝐺′( 𝑢′, 𝑣′)  and is defined as the transfer 

function of the system. Hopkins [2] proposed h(s,t) as a measure of image quality for 

simple objects. In the case of incoherent light illumination, h(s, t) can be expressed as 

the auto –correlation integral of the pupil function. Thus  

ℎ(𝑠, 𝑡) = ∬ 𝑔(𝑥, 𝑦)𝑔(𝑥 − 𝑠, 𝑦 − 𝑡)𝑑𝑥𝑑𝑦   .                                                … (11)

∞

−∞

 

A uniform intensity distribution in the object plane implies a zero frequency      

𝑏 (0 ,0 ) in the Fourier spectrum. It is desirable to normalize the optical transfer 

function to unity at zero frequency. The normalized transmission factor is defined as  

𝐷(𝑠, 𝑡) =
ℎ(𝑠, 𝑡)

ℎ(0,0)
   .                                                                               … (12) 
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The function D(s,t) is complex valued and has both amplitude and phase components. 

Thus  

𝐷(𝑠, 𝑡) = 𝑇(𝑠, 𝑡) exp(𝑖𝜃)   ,                                                                      … (13) 

which can be written as  

𝐷(𝑠, 𝑡) = 𝑇𝑁(𝜔) exp[𝑖𝜃(𝜔)]   .                                                                     … (14) 

 

In the above, D(s, t) is expressed as a function of the spatial frequency , so we have 

replaced the frequency plane co-ordinates (s, t) with the reduced spatial frequency . 

which can be expressed in terms of the actual line frequency by  

𝜔 =
𝜆𝑣

(𝑁𝐴)
     ,                                                                                    … (15) 

where   is the actual  line frequency of  the object expressed as the number of line 

per mm or cm,   is the wavelength of the light used ,denominator NA is the 

numerical aperture of the objective. Following the treatment of Hopkins [2] the one 

dimensional normalized OTF can be written as  

𝑇(𝜔)𝑁 =
∬ 𝑔(𝑥, 𝑦)𝑔[(𝑥 − 𝜔), 𝑦]𝑑𝑥𝑑𝑦

∞

−∞

∫ ∫ |𝑔(𝑥, 𝑦)|2𝑑𝑥𝑑𝑌
∞

−∞

                                        … (16) 

                                                             

The above expression gives the effect of the auto correlation of pupil function in 

which the integrand is non zero in the region of overlap of the pupil.  In this section 

we obtain the explicit form of the general auto – correlation integral for the evaluation 

of the OTF for the specific case of an optical system apodised with Gaussian 

amplitude filter. 

 𝑔(𝑥, 𝑦)   = exp (−
𝑟2

𝜎2)        𝑓𝑜𝑟 0 < 𝑟 < 1                                              … (17) 

                  = 0                          𝑓𝑜𝑟  𝑟 > 1  ,                                                                      

where  is the apodisation parameter which controls transmission of the pupil. From 

equations (16) and (17), we have   
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 where, the limits of integration decided by the fact that the pupil transmission is zero 

for value of 𝑥2 + 𝑦2 > 1.  Therefore the infinite limits of integral can be replaced by 

finite limits. Spatial frequency for which the two pupils completely overlap with each 
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other (𝜔 = 0), partially overlap with each other (𝜔 < 2) and non overlapping case 

(𝜔 = 2).  These cases are depicted in Fig 2: 

 

Fig 2: Possible cases of spatial frequency 

 

 

Fig 3: Auto correlation of the pupil function.  Shaded region is the domain of integral 

of normalized OTF. 

 

Because of the symmetry of domain of integration as depicted in the Fig 3, the 

equation (18) reduces to   

 

𝑇(𝜔)𝑁  =   
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The limits in the numerator are due to fact that the integration need to be carried out 

only for one quarter part of the entire area of overlap as shown in Fig 3. The 
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denominator in the above expression is a normalizing factor required to make the 

OTF value equal to unity at zero spatial frequency. Equivalent Pass-band (EP) also 

called the ‘Structural Resolution’ [10] is an important parameter for the evaluation of 

the performance of an Optical system. This is useful criterion for the purpose of 

determining how closely an apodised system approaches to unapodised system whose 

modulation transfer function is controlled by the effects of diffraction. By using 

numerical methods, Levi [11] calculated the EP of an aberration free lens.  The EP of 

a lens is defined as the integral of the square of the Modulation Transfer Function 

(MTF) of the lens [12]. Thus, the EP can be expressed as  

 

 𝐸𝑃 =
1

2
∫ [𝑇(𝜔)𝑁]2𝑑𝜔

2

0

                                                     … (20)   

 

3. RESULTS AND DISCUSSION 

In this section, the results of incoherent OTF for the rotationally symmetric Gaussian 

filters are discussed. The transfer function has been computed over the range of 

spatial frequencies from 0 to 2.0 for apodisation parameter 𝜎 from 0.1 to 1.0 in step of 

0.1, and 3.08607. The numerical results of 𝑇(𝜔)𝑁 are presented in Fig 4. From the 

curves, it is observed that there is an enhancement of response to lower frequencies 

for all values  𝜎 ,  meaning that OTF of the apodised system is larger than that of Airy 

system. The cut off frequencies show a gradual increase with increasing values of  𝜎 

from 0.1 to 1.0. In the case of    𝜎 =3.08607, cut off frequency approaches to 2.0. In 

the case of  𝜎 =0 (Airy case) as 𝜔 = 0,  the value of OTF is 1. In the case of 𝜎 =0 and 

other values of 𝜔, OTF becomes zero. The little enhancement of OTF in low 

frequency stands in poor comparison to the large suppression in high frequency 

region. The EP has been calculated for each value of 𝜎 varying from 0 to 1 in step of 

0.1 results are presented Fig 5. EP value is 0.2978 for 𝜎 =0.9 and for higher values of 

𝜎 EP is decreasing. This is optimum value of apodisation at which the transmission of 

signal power is maximum.  
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4. CONCLUSION 

 The complex OTF and EP of symmetrical optical system with incoherent light of 

illumination is studied using Gaussian amplitude filter. These parameters are 

computed against the spatial frequency for different values of apodisation parameter. 

This kind of analysis is useful in confocal microscopy, photography, and signal 

processing system. 
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