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Abstract 
 

In this paper, we investigated the fully developed free convection flow of a 
Williamson fluid through a porous medium in a vertical channel under the 
effect of magnetic field. The governing non-linear equations are solved for the 
velocity field and temperature field using the perturbation technique. The 
effects of various emerging parameters on the velocity field and temperature 
field are studied through graphs in detail.  
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1. Introduction 
In recent years convective heat transfer in porous media has received a great deal of 
attention due to its importance in various technological applications such as 
geothermal systems, grain storage, fibre and granular insulation, cooling of electronic 
systems, packed-sphere beds, chemical catalytic reactors, groundwater hydrology, 
petroleum reservoirs, coal combustors, nuclear waste repositories and filtration, see 
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books by Nakayama [19], Nield and Bejan [20], Ingham and Pop [17,18], Vafai [27] 
and Pop and Ingham [21]. 
 The investigation of free convection in vertical channels arises in many industrial 
processes and natural phenomena. Most of the interest in this subject is due to its 
applications, for instance, in the design of cooling systems for electronic devices and 
in the field of solar energy collection. Barletta [5] has investigated the combined 
forced and free flow of a fluid in a vertical channel with viscous dissipation and 
isothermal-isoflux boundary conditions. Szeri and and Rajagopal [26] have studied 
the flow of a third grade fluid between heated parallel plates caused by external 
pressure gradient and obtained similarity solutions of the energy equation, 
numerically. Akyıldız [1] have studied the flow of third grade fluid between heated 
parallel plates. Chamka et al. [10] have studied the fully developed free connective 
flow of micropolar fluid between two vertical parallel plates analytically. Recently, 
Siddiqui et al. [23] have investigated the flow of a third grade non-Newtonian fluid 
between two parallel plates separated by a finite gap by using the Adomian 
decomposition method. Williamson fluid is characterized as a non-Newtonian fluid 
with shear thinning property, i.e., viscosity decreases with increasing rate of shear 
stress (Dapra and Scarpi [12]).  
 The past six decades have seen a tremendous interest in studies involving 
magnetohydrodynamic flow and heat transfer in porous and non-porous medium. This 
is primarily due to an increase in industrial and technological applications of flows 
involving electrically conduction fluids. For example, Sparrow and Cess [24] 
considered the effect of a magnetic field on the free convection heat transfer from a 
surface. Garandet et al. [14] have studied buoyancy driven convection in a rectangular 
enclosure with a transverse magnetic field. Chamkha [9] have investigated the free 
convection effects on three-dimensional flow over a vertical stretching surface in the 
presence of a magnetic field. Bhargava et al. [3] have studied the effect of magnetic 
field on the free convection flow of micropolar fluid between two parallel porous 
vertical plates. Hayat et al. [15] have studied the Hall effects on the unsteady 
hydromagnetic oscillatory flow of a second grade fluid. Hazeem attia [16] have 
investigated the unsteady flow of a dusty conducting fluid between parallel porous 
plates. Sanyal and Adhikari [22] have studied the effects of radiation on MHD fluid 
flow in vertical channel. Recently, Subramanyam et al. [25] have investigated the 
fully developed free convection flow of a third grade fluid through a porous medium 
in a vertical channel under the effect of a magnetic field.  
 In view of these, we studied the fully developed free convection flow of a 
Williamson fluid through a porous medium in a vertical channel under the effect of 
magnetic field. The governing non-linear equations are solved for the velocity field 
and temperature field using the perturbation technique. The effects of various 
emerging parameters on the velocity field and temperature field are studied through 
graphs in detail.  
 
 
2. Mathematical formulation 
The equations governing the flow of an incompressible Williamson fluid are given by   
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 . 0V    (1) 

 .dV f
dt

     (2) 

 
where   denotes the constant fluid density, V is the velocity vector and f represents 
the body force per unit mass. The operator /d dt  denotes the material time derivative 
and   is the stress tensor.  
 The constitutive equation for a Williamson fluid is given by 

    1
0 1     

 
         (3) 

 
 Where   is the extra stress tensor,   is the infinite shear rate, viscosity o  is the 
zero shear rate viscosity,   is the time constant and   is defined as  

 
1 1
2 2ij ji

i j
        (4) 

 
where   is the second invariant stress tensor. We consider in the constitutive Eq. (3) 
the case for which 0   and 1   so we can write. 
  0 1          (5)  
 
 The above model reduces to Newtonian for 0  .  

 

 
Fig. 1 The physical model 
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 We consider the laminar free convection flow of a Williamson fluid between two 
plates at distance h a apart filled with porous medium, as shown in Fig.1.We choose 
co-ordinates system, with X - axis parallel to the flow while Y - axis is normal to the 
flow. A uniform magnetic field 0B  is applied in the transverse direction to the flow. 
The flow assume steady and fully developed, i.e., the transverse velocity is zero. It is 
also assumed that the walls are heated uniformly but their temperatures may be 
different resulting in asymmetric heating situation under these assumptions the 
equations that describe the physical situation are 

  
22

20
0 0 02 ( ) 0d u d du u B u g T T

dy dy dy k


   
  

        
   

 (6) 

 
2

2 0T
y





  (7) 

 
where k is permeability of the porous medium and  is the electrical conductivity. 
 Subject to the boundary conditions 
     10 0,    0u T T  ,     20,    u h T h T   (8) 

 
 Introducing the following non-dimensional variables  

 0 1 0

0 2 0 2 0

, , , , , T
T T T Tu y x Uu y x We r

U h h h T T T T



 

     
 

 (9) 

 
into Eqs. (6) and (7), we get (after dropping the bars) 

 
22

2
2 0

Re
d u d du GrWe N u
dy dy dy


  

     
   

 (10)  

 
2

2 0d
dy

   (11) 

 

where 2 1N M
Da

  , 0
0

M B h 


  is the Hartmann number, 2

kDa
h

  is the 

Darcy number, 
  3

2 0
2

g T T h
Gr





  is the Grashof number and Re Uh


  is the 

Reynolds number.  
 The corresponding dimensionless boundary conditions  
    0 0,    0 Tu r  ,    1 0,    1 1u    (12) 
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3. Perturbation Solution  
Eq. (10) is non-linear and it is difficult to get a closed form solution. However for 
vanishing We , the boundary value problem is agreeable to an easy analytical solution. 
In this case the equation becomes linear and can be solved. Nevertheless, small   
suggests the use of perturbation technique to solve the non-linear problem. 
Accordingly, we write 
 0 1u u Weu   (13) 
 
and  
 0 1We     (14) 
 
 Substituting equations (11) and (12) into Eqs. (8) and (9) and boundary conditions 
(10) and then equating the like powers of We , we obtain 
 
3.1 Zeroth-order system  0We  

 
2

20
0 02 Re

d u GrN u
dy

    (15) 

 
2

0
2 0d

dy


   (16) 

 
 Together with boundary conditions  
    0 00 1 0u u  ,  0 0 Tr  ,  0 1 1   (17)  
 
3.2 First-order system  We  

 
22

2 01
1 12 Re

dud u d GrN u
dy dy dy


  

     
   

 (18) 

 
2

1
2 0d

dy


   (19) 

 
 Together with boundary conditions  
    1 10 1 0u u  ,  1 0 0  ,  1 1 0   (20) 
 
3.3 Zeroth-order solution  
Solving Eqs. (15) and (16) using the boundary conditions (20), we get 
  0 1T Tr r y     (21) 

  0 12

1 sinh cosh 1
Re T T T
Gru C Ny r Ny r y r

N
          (22) 
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here  

 1
cosh 1
sinh

Tr NC
N


 .  

 
3.4 First-order solution  
Solving Eq. (19) subject to the boundary conditions in Eq. (20), we get 
  1 0    (23) 
 
 Substituting the Eqs. (22) and (23) into the Eq. (18) and then solving the resulting 
equation with the corresponding conditions, we get  

 
2 2

3 7 2
1 6

3 4 5

2 cosh 6 sinh 2 sinh 21
Re 6 2 cosh 2 3 sinh 3 cosh

C Ny C N Ny C NyGru
N C Ny C Ny Ny C Ny Ny

             
 (24) 

 
where  3 2 2

2 1TC N r C  , 3
3 12 TC A r N ,   2

4 2 1T TC r r N  ,   2
5 12 1 TC C r N  , 

  6 2 3 4 52

1 2 sinh 2 2 cosh 2 3 sinh 3 cosh
6

C C N C N NC N NC N
N

    , 

 3
7 6 2

cosh sinh
3

C NC C N
N

    
. 

 
 Finally, the perturbation solutions up to first order for   and u  are given by 
  0 1 0 1T Tr r y           (25) 
 
and  
 0 1u u u    (26) 
 
 
4. Discussion of the results 
The effect of Weissenberg number We on u  for 1,M   0.5,Tr   1Gr   and 
Re 1  is shown in Fig. 2. It is observed that, velocity u  first decreases and then 
increases with increasing We .  
 Fig. 3 shows the effect of Darcy number Da  on u  for 1Gr  , 0.2We  , 1M 
, 0.5Tr  and Re 1 . It is noted that, the velocity u  increases with increasing Da . 
 The effect of Hartman number M  on u  for 0.1,We   0.5,Tr   1Gr  and 
Re 1  is represented in Fig. 4. It is found that, the velocity u  decreases with an 
increase in Hartmann number M . 
 Fig. 5 depicts the effect of Grashof number Gr  on u  for 1, 0.5,TM r   

0.1We   and Re 1 . It is observed that, the velocity u  increases with increasing 
Grashof numberGr . 
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 The effect of Reynolds number Re on u  for 1, 0.5,TM r  1Gr   and 
0.1We   is shown in Fig. 6. It is noted that, the velocity u  decreases with an 

increase in Reynolds number Re .  
 Fig. 7 illustrates the effect of wall temperature parameter Tr  on u  for 1,M   

0.1,We   1Gr  and Re 1 . It is found that, the velocity u  increases with 
increasing Tr . 
 The effect of wall temperature parameter Tr  on   is shown in Fig. 8. It is 
observed that, the temperature increases with an increase in Tr .  
 
 
5. Conclusions 
In this paper, we studied the fully developed free convection flow of a Williamson 
fluid in a vertical channel under the effect of magnetic field. The governing non-linear 
equations are solved for the velocity field and temperature field using the perturbation 
technique. It is found that, the velocity increases with increasing We , Gr and Tr , 
while it decreases with increasing M . It is observed that, the temperature increases 
with an increase in Tr .  

 

 
Fig. 2. Effect of Weissenberg number We  on u  for 1Gr  , 0.1Da  , 1M  , 

0.5Tr  and Re 1 .  
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Fig. 3. Effect of Darcy number Da  on u  for 1Gr  , 0.2We  , 1M  , 0.5Tr 
and Re 1 .  

 

 
Fig. 4. Effect of Hartmann number M  on u  for 0.2, 0.1, 0.5,TWe Da r    

1Gr  and Re 1 . 
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Fig. 5. Effect of Grashof number Gr  on u  for 1, 0.1, 0.5,TM Da r    0.1We 
and Re 1 . 

 

 
Fig. 6. Effect of Reynolds number Re on u  for 1, 0.5,TM r   0.1We   and 

1Gr  . 
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Fig. 7. Effect of wall temperature parameter Tr  on u  for 1,M   1,Gr   0.1We 
and Re 1 . 

 

 
Fig. 8. Effect of wall temperature parameter Tr  on   . 
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