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establishment of PES in Rayleigh-Benard convection problems in a comprehensive 
manner. S. H. Davis (1969) proved an important theorem concerning this problem. He 
proved that the eigenvalues of the linearized stability equations will continue to be 
real when considered as a suitably small perturbation of a self-adjoint problem, such 
as was considered by Pellew and Southwell. This was one of the first instances in 
which Operator Theory was employed in hydrodynamic stability theory. As one of 
several applications of this theorem, he studied Rayleigh-Benard convection with a 
constant gravity and established PES for the problem. Since then several authors have 
studied this problem under the varying assumptions of hydromagnetic and 
hydrodynamics. 
 Convection in porous medium has been studied with great interest for more than a 
century and has found many applications in underground coal gasification, solar 
energy conversion, oil reservoir simulation, ground water contaminant transport, 
geothermal energy extraction and in many other areas. In the present paper, the 
problem of Rayleigh –Benard Convection in porous medium heated from below with 
variable gravity is analyzed by the method of positive operator and it is established 
that principle of exchange of stabilities valid for this general problem, when g(z) is 
non-negative throughout the fluid layer. 
 
 
2. Mathematical Formulation of the Physical Problem 
Consider an infinite horizontal porous layer of fluid of depth‘d’ confined between two 
horizontal planes ݖ ൌ 0 and ݖ ൌ  ݀ under the effect of variable gravity, ))z(g0,0(g −

r
. 

Let ∆ܶ be the temperature difference between the lower and upper plates. Thus, the 
governing equations for the Rayleigh-Benard flow–saturated porous medium under 
Boussinesq approximation and under the effect of variable gravity are; 
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 In the above equations, , T ρ , K, α  and υstand for filter velocity, temperature, 
density, thermal diffusivity, coefficient of thermal expansion, and the kinematic 

viscosity, respectively. Here, E= )1( ε−+ε v0

ss
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 is a constant, where s,s cρ  stand for 

density and heat capacity of solid (porous matrix) material and v,0 c,ρ  for fluid, 
respectively. Here, the suffix zero refers to the value at the reference level z=0.  
 Following the usual steps of the linearized stability theory, it is easily seen that the 
nondimensional linearized perturbation equations governing the physical problem 
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described by equations (1)-(4) can be put into the following forms, upon ascribing the 
dependence of the perturbations of the form  

, ሺߪ ൌ ௥ߪ ൅  ௜ሻߪ݅
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together with following dynamically free and thermally and electrically perfectly 
conducting boundary conditions 
  at   (7) 
 

 In the forgoing equations,  is the real independent variable,  is the 

differentiation with respect to z , 
2k  is the square of the wave number, Pr κ
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is the thermal Rayleigh number, 
( )ir iσ+σ=σ  is the complex growth rate associated with the perturabations and θ,w  

are the perturbations in the vertical velocity, temperature, respectively.  
 The system of equations (5)-(6) together with the boundary conditions (7) 
constitutes an eigenvalue problem.  
 
 
3. ABSTRACT FORMULATION 
THE METHOD OF POSITIVE OPERATOR 
We seek conditions under which solutions of equations (5)-(6) together with the 
boundary conditions (7) grow. The idea of the method of the solution is based on the 
notion of a ‘positive operator’, a generalization of a positive matrix, that is, one with 
all its entries positive. Such matrices have the property that they possess a single 
greatest positive eigenvalue, identical to the spectral radius. The natural generalization 
of a matrix operator is an integral operator with non-negative kernel. To apply the 
method, the resolvent of the linearized stability operator is analyzed. This resolvent is 
in the form of certain integral operators. When the Green’s function Kernels for these 
operators are all nonnegative, the resulting operator is termed positive. The abstract 
theory is based on the Krein –Rutman theorem (1962), which states that;  
 “If a linear, compact operator A, leaving invariant a cone h , has a point of the 
spectrum different from zero, then it has a positive eigen value λ , not less in modulus 
than every other eigen value, and this number corresponds at least one eigen vector 
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h∈φ  of the operator A, and at least one eigen vector 
∗∈ϕ h  of the operator ∗A ”. For 

the present problem the cone consists of the set of nonnegative functions. 
 To apply the method of positive operator, formulate the above equations (5) and 
(6) together with boundary conditions (7) in terms of certain operators as;  
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 We know that ܮ 2 ሺ0, 1ሻ is a Hilbert space, so, the domain of M is 
 dom M~  = ( ) ( ){ }010,Bm,D/B =φ=φ∈φφ∈φ . 
 
 We can formulate the homogeneous problem corresponding to equations (5)-(6) 
by eliminating θ from (8) and (9) as;  
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where, ( )σξ PrE,,zg is Green’s function kernel for the operator ( )PrEM σ+ , and is 
given as 
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 In particular, taking 0=σ , we have )0(TM 1 =−
is also an integral operator. 

 ( )σK defined in (12), which is a composition of certain integral operators, is 
termed as linearized stability operator. K( σ ) depends analytically on σ  in a certain 
right half of the complex plane. It is clear from the composition of K( σ ) that it 
contains an implicit function of σ  .  

 We shall examine the resolvent of the K( σ ) defined as ( )[ ] 1KI −σ−  
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 is positive for all n, then the right side of (13) has an expansion in
( )σ−σ0  with positive coefficients. Hence, we may apply the methods of Weinberger 
(1969) and Rabinowitz (1969), to show that there exists a real eigenvalue 1σ  such that 
the spectrum of ( )σK  lies in the set ( ){ }1Re: σ≤σσ . This is result is equivalent to 
PES, which was stated earlier as “the first unstable eigenvalue of the linearized 
system has imaginary part equal to zero.”  
 
 
4. THE PRINCIPLE OF EXCHANGE OF STABILITIES (PES) 
It is clear that ( )σK is a product of certain operators. Condition (1) can be easily 
verified by following the analysis of Herron (2000, 2001) for the present operator 

( )σK . The operator ( )0M~ 1 Τ=−
 is an integral operator whose Green’s function 

( )0;,zg ξ  is nonnegative so 1M~ − = T(0) is a positive operator. It is mentioned above 
that ( )σPrET is an integral operator its Green’s function kernel g ( )σξ PrE,,z  is the 
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problem 
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where, ( )t,z ξ−δ  is Dirac –delta function in two-dimension, with boundary 
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 Following Herron (2000), by direct calculation of the inverse Laplace transform, 
we can have   

 
( ) ( ) 0dtt,,zGetPrE,,zg

d
d

0

tPrEn
n

≥ξ=σξ⎟
⎠
⎞

⎜
⎝
⎛

σ
− ∫

∞
σ−

 for all n and PrE
k 2

−>σ
.  

 ( ) ( ) 1
PrEM~PrET

−
σ+=σ is positive operator for all real PrE

k2

0 −>σ
, and that 

( )PrET σ  has a power series for all real PrE
k 2

0 −>σ
 

 It has been demonstrated that all of the terms in ( )σK  determine positive operator. 
i.e. ( )σK  is a linear, compact integral operator. Thus, ( )σK  is a positive Moreover, 
for σ  real and sufficiently large, the norms of the operators ( ) ( )σPrT,0T  become 

arbitrarily small. So, ( ) 1K <σ . Hence, ( )[ ] 1KI −σ−  has a convergent Neumann 

series, which implies that ( )[ ] 1KI −σ−  is a positive operator. This is the content of 
condition (1). 

 To verify condition(2) for g(z) 0≥ for all ]1,0[∈z  and Pr
max{

2

0 E
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}, while 
2k  and TR are clearly positive. Therefore by the product rule for differentiation, one 

concludes that )(K σ in (12) satisfies condition (2).  
 
 
Conclusions 
In the present paper, principle of exchange of stabilities valid for this general 
problem, when g(z) is non-negative throughout the fluid layer. 
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