
Journal of Applied Mathematics and Fluid Mechanics. 
ISSN 0974-3170 Volume 6, Number 1 (2014), pp. 1-19 
© International Research Publication House 
http://www.irphouse.com 

 
 

Radiation, Soret and Dufour Effects in MHD Channel Flow 
Bounded by a Long Wavy Wall and a Uniformly Moving 

Parallel Flat Wall 
 
 

N. Ahmed1, D. J. Bhattacharyya2 and D. P. Barua3 
 

Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India 
1 e-mail: saheel_nazib@yahoo.com 2 e-mail: shandilyadhruva@gmail.com 

3 e-mail: math_byte@yahoo.com 
 
 

ABSTRACT: 
 

A parametric study to investigate the effects of Radiation, Soret and Dufour 
effects on a two dimensional free convective MHD flow of a viscous 
incompressible and electrically conducting fluid through a channel bounded 
by a long vertical wavy wall and a uniformly moving parallel flat wall is 
presented. A uniform magnetic field is assumed to be applied normal to the 
flat wall. The equations governing fluid flow are solved analytically subject to 
the relevant boundary conditions. It is assumed that the solution consists of 
two parts, a mean part and a perturbed part. The long wave approximation has 
been used to obtain the solution of the perturbed part and to solve the mean 
part the well known approximation used by Ostrich (1952) [1] has been 
utilized. The perturbed part of the solution is the contribution from the 
waviness of the wall. The expressions for zeroth and first order velocity, 
temperature, concentration, and skin friction and the rates of heat and mass 
transfer at the walls are obtained. Some of the results indicating the influence 
of radiation, Soret and Dufour effects on the above fields have been presented 
graphically. 
 
2006 Mathematics subject classification: 76W05  
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INTRODUCTION: 
The incompressible boundary layer flow over a wavy wall has drawn attention due to 
its application in several areas such as cross-hatching on ablative surface, 
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transpiration cooling of re-entry vehicle and rocket booster and film vaporization in 
combustion chambers. Lukodius, Nayfeh and Saric [2] made a linear analysis of 
compressible boundary layer flows over a wavy wall. The Rayleigh problem for wavy 
wall was studied by Shankar and Sinha [3]. The analysis of the effect of small 
amplitude wall waviness upon the stability of the laminar boundary layer was made 
by Lessen and Gangwani [4]. Vajravelu and Sastri [5] presented an analysis of the 
free convective heat transfer in a viscous incompressible fluid between a long vertical 
wavy wall and a parallel flat wall. Further they extended their work for vertical wavy 
channels. Rao and Sastri [6] extended the work of Vajravelu and Sastri [7] to viscous 
heating effects when the fluid properties are constant. Again Rao [8] reinvestigated 
the problem of Rao and Sastri [6] for the channels which are of different wave 
numbers. Das and Ahmed [9] studied the free convection MHD flow and heat transfer 
in a viscous incompressible fluid confined between a long vertical wavy wall and a 
parallel flat wall. In the above mentioned works, the diffusion-thermo (Dufour) and 
the thermal-diffusion (Soret) terms were not taken into account in the energy and 
concentration equations respectively. But when the heat and mass transfer occur 
simultaneously in a moving fluid, the relations between the fluxes and driving 
potentials are of a more intricate nature. It is found that a heat flux can be generated 
not only by temperature gradients but by composition gradients as well. The heat flux 
that occurs due to composition gradient is called the Dufour effect or diffusion-thermo 
effect. On the other hand the flux of mass caused due to temperature gradient is 
known as the Soret effect or the thermal-diffusion effect. The experimental 
investigation of the thermal-diffusion effect on mass transfer related problems was 
first done by Charles Soret in 1879. Hence this thermal-diffusion is known as the 
Soret effect in honour of Charles Soret. In general the Soret and Dufour effects are of 
a smaller order of magnitude than the effects described in Fourier’s or Fick’s law and 
are often neglected in heat and mass transfer processes. Though these effects are quite 
small, certain devices can be arranged to produce very steep temperature and 
concentration gradients so that the separation of components in mixtures are affected. 
Eckert and Drake [10] have emphasized that the Soret effect assumes significance in 
cases concerning isotope separation and in mixtures between gases with very light 
molecular weight (H2, He) and for medium molecular weight (N2, air), the Dufour 
effect is found to be of considerable magnitude such that it cannot be ignored. 
Following Eckert and Drake’s work [10] several other investigators have carried out 
model studies on the Soret and Dufour effect in different heat and mass transfer 
problems. Some of them are Durnskaya and Worek [11], Kafoussias and Williams 
[12], Sattar and Alam [13], Alam et al. [14] and Raju et al. [15]. Recently Ahmed et 
al. [16] have investigated the Soret and Dufour effects in free convection MHD flow 
of a viscous incompressible fluid through a channel bounded by a long vertical wavy 
wall and parallel flat wall. 
 Radiation is a process of heat transfer through electromagnetic waves. Radiative 
convective flows are encountered in countless industrial and environment processes 
e.g. heating and cooling chambers, fossil fuel combustion energy processes, 
evaporation from large open water reservoirs, astrophysical flows, and solar power 
technology and space vehicle re-entry. Radiative heat and mass transfer play an 
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important role in manufacturing industries for the design of reliable equipment. 
Nuclear power plants, gas turbines and various propulsion devices for aircraft, 
missiles, satellites and space vehicles are examples of such engineering applications. 
If the temperature of the surrounding fluid is rather high, radiation effects play an 
important role in space related technology. The effect of radiation on various 
convective flows under different conditions has been studied by many researchers 
including Hossain and Takhar [17], Ahmed and Sarmah [18], Rajesh and Varma [19] 
and Kesavaiah et al. [20].  
 The present authors are aware that no attempt has been made till now, to study the 
effect of thermal radiation on an MHD free convective mass transfer flow through a 
channel bounded by a long wavy wall and a uniformly moving parallel flat wall 
involving Soret and Dufour effects. Such an attempt has been made in the present 
paper in view of the application of such types of problems in different engineering 
fields. This work is a generalization of the work done by Ahmed et al. [16], to 
incorporate the radiation effect in addition to Soret and Dufour effects. In particular, 
the present work is an extension to that of Ahmed and Bhattacharyya [22], to the case 
of a moving flat wall and a fixed wavy wall.  
 
 
BASIC EQUATIONS:  
We consider a two dimensional steady laminar free convective MHD flow through a 
vertical channel. The x-axis is taken parallel to the flat wall and y-axis is 
perpendicular to it. The wavy and the flat walls are represented by cosy kxε=  and 
y d=  respectively, wT  and 1T  being their constant temperatures. 

 



4  N. Ahmed et al 
 

 

 Our investigation is restricted to the following assumptions:  
1. All the fluid properties, except the density in the buoyancy force term, are 

constants. 
2. The viscous and magnetic dissipation of energy are negligible. 
3. The volumetric heat source/sink term in the energy equation is constant. 
4. The magnetic Reynolds number is small enough to neglect the induced 

magnetic field. 
5. The wave length of the wavy wall, which is proportional to1 k , is large. 

 
 Under the foregoing assumptions, the equations which govern the two 
dimensional steady laminar free convective MHD flow and heat transfer in a viscous 
incompressible fluid occupying the channel are as follows:  
The momentum equations: 

 

2 2
2

2 2

u u p u uu v g B u
x y x x y

ρ μ ρ σ
⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂ ∂+ = − + + − −⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦  

(1) 

 

2 2

2 2

v v p v vu v
x y y x y

ρ μ
⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂ ∂+ = − + +⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦  

(2) 

 The continuity equation:  

 
0u v

x y
∂ ∂+ =
∂ ∂  

(3) 

 The energy equation: 

 

2 2 2 2

2 2 2 2
M T r

p
S

D K qT T T T C CC u v Q
x y x y C x y y

ρρ κ
⎡ ⎤ ⎡ ⎤⎡ ⎤ ∂∂ ∂ ∂ ∂ ∂ ∂+ = + + + + −⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(4) 

 The species continuity equation: 

 

2 2 2 2

2 2 2 2
M T

M
m

D KC C C C T Tu v D
x y x y T x y

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂+ = + + +⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦  (5) 
 The radiative heat flux rq  as emphasised by Cogely et al. [21] for an optically thin 
fluid is given by:

 

 

( )

( )
0

4                      

where,  

r
S

b
w

w

q I T T
y

eI K d
T

λ
λ λ

∞

∂ = −
∂

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫
 

(6) 

 In static condition (1) takes the form 

 
0 s

s
p g
x

ρ∂= − −
∂  

(7) 

 Now, (1) and (7) yields:
 

 
( ) ( )

2 2
2

2 2 = +g +s s
u u u uu v p p B u
x y x x y

ρ ρ ρ μ σ
⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂ ∂+ − − − + −⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦  

(8) 
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 The equation of state is given by: 

 ( ) ( )1s s sT T C Cρ ρ β β⎡ ⎤= − − − −⎣ ⎦  (9) 
 The equation (8) and (9) together give: 

 
( ) ( ) ( )

2 2
2

2 2s s s
u u u uu v g T T C C B u
x y x x y

ρ ρ ρ ρ β β μ σ
⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂ ∂⎡ ⎤+ = − − + − + − + + −⎢ ⎥⎢ ⎥ ⎣ ⎦∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

 (10) 

 The relevant boundary conditions are as under: 

 cos  :   0;   ;  w wy kx u v T T C Cε= = = = =  (11) 

 1 1 :    ;    0;    ;   y d u U v T T C C= = = = =  (12) 
 We define the following non-dimensional quantities: 

 

22

2 2,  ,  ,  ,  ,  ,  ,  ,  ,ps
s r

Cp dx y ud vd pdx y u v p p kd p
d d d k

μελ ε
υ υ ρυ ρυ

= = = = = = = = =
 

 

( ) ( )33
1 1

2 2,  ,  ,  ,w sw s s s
r m

w s w s

d g C Cd g T T C C T TG G n m
C C T T

ββ
υ υ

−− − −= = = =
− −  

 

( )
( )

( )
( )

2 2

,  ,  ,  ,M T w sM T w s
r u c

Ms p w sm w s

D K C CD K T T B dS D S M
DC C T TT C C
υ σ

ρυυυ
−−

= = = =
−−

 

 ( )
2 24,  ,  ,  ,  s s

w s w s pw s

T T C C Qd Id UdT C N U
T T C C Ck T T

α
ρυ υ

− −= = = = =
− − −

 
 All physical variables and parameters are defined in the Nomenclature section. 
 The corresponding equations in non dimensional form are as under: 

 
( )

2 2

2 2s r m
u u u uu v p p G T G C Mu
x y x x y

∂ ∂ ∂ ∂ ∂+ = − − + + + + −
∂ ∂ ∂ ∂ ∂  

(13) 

 

2 2

2 2
v v p v vu v
x y y x y

∂ ∂ ∂ ∂ ∂+ = − + +
∂ ∂ ∂ ∂ ∂  

(14) 

 

2 2 2 2

2 2 2 2r u r r
T T C C T TP D P u v P NT

x y x y x y
α

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ + + = + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠  
(15) 

 

2 2 2 2

2 2 2 2

1
r

c

C C T T C CS u v
S x y x y x y
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ + + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠  

(16) 

 
0u v

x y
∂ ∂+ =
∂ ∂  

(17) 

 Subject to the folowing boundary conditions: 
 0,  0,   1,   1    on    cosu v T C y xε λ= = = = =  (18) 

 ,  0,  ,      on    1u U v T m C n y= = = = =  (19) 
 
 
METHOD OF SOLUTION: 
In order to solve the equations (13) to (17), we assume ,  ,  ,   and u v p T C as follows: 
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 ( ) ( ) ( )0 1, ,  u x y u y u x yε= + + − − − − − − − − − −  (20.1) 

 ( ) ( )1, ,   v x y v x yε= + − − − − − − − − − − − − − −  (20.2) 

 ( ) ( ) ( )0 1, ,  p x y p x p x yε= + + − − − − − − − − − −  (20.3) 

 ( ) ( ) ( )0 1, ,   T x y T y T x yε= + + − − − − − − − − − −  (20.4) 

 ( ) ( ) ( )0 1, ,  C x y C y C x yε= + + − − − − − − − − − −  (20.5) 
 By substituting the transformations (20.1) to (20.5) in (13) to (17), and by 
equating the coefficients of 0 1,  ε ε  and neglecting the higher powers of ε  and 

assuming ( )0 0,  sp p
x

∂ − =
∂

 (following Ostrach [1])
 
we derive the following set of 

ordinary differential equations: 

 

2
0

0 0 02 r m
d u Mu G T G C
dy

− = − −
 

(21) 

 

2 2
0 0

02 2r u r
d T d CP D P NT
dy dy

α+ = − +
 

(22) 

 

2 2
0 0

2 2 0r c
d C d TS S
dy dy

+ =   (23) 

 

2 2
01 1 1 1

0 1 1 1 12 2 r m
duu p u uu v G T G C Mu

x dy x x y
∂ ∂ ∂ ∂+ = − + + + + −
∂ ∂ ∂ ∂

  (24) 

 

2 2
1 1 1 1

0 2 2

v p v vu
x y x y

∂ ∂ ∂ ∂= − + +
∂ ∂ ∂ ∂

  (25) 

 
1 1 0

u v
x y

∂ ∂
+ =

∂ ∂
  (26) 

 

2 2 2 2
01 1 1 1 1

0 1 12 2 2 2r u r r
dTT T C C TP D P u v P NT

x y x y x dy
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂+ + + = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠  

(27) 

 

2 2 2 2
01 1 1 1 1

0 12 2 2 2

1
r

c

dCC C T T CS u v
S x y x y x dy
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂+ + + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

  (28) 

 Subject to the following boundary conditions: 

 

0 0 0

0 0 0

0,  1,    1     at   0
,  ,       at   1        

u T C y
u U T m C n y

= = = = ⎫
⎬= = = = ⎭

  (29) 

 

( ) ( ) ( )1 0 1 1 0 1 0

1 1 1 1

Re 0 , 0,  Re 0 ,  Re 0   at  0

0, 0,  0,  0  at  1

i x i x i xu u e v T T e C C e y

u v T C y

λ λ λ ⎫′ ′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = = − = − = ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎬
= = = = = ⎪⎭

(30) 

 The solutions of the equations (21), (22) and (23) subject to the boundary 
conditions (29) are: 

 ( ) 1 2
0 20 19 15 16 18 17   

A y A yM y M yu y A e A e A e A e A y A−= + + + + +  (31) 

 ( ) 1 2
0 4 3 5

A y A yT y A e A e A= + +   (32) 



Radiation, Soret and Dufour Effects in MHD Channel Flow  7 
 

 

 ( ) 1 2
0 8 9 7 10

A y A yC y A e A e A y A= + + +   (33) 
 Where,  

1  ,
1

r

c r r u

P NA
S S P D

=
−  

2 1 ,A A= −  
1

2 1 2 13
1 1  ,

A

A A A A
r r

eA m
e e P N e e P N

α α⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

4 31  ,
r

A A
P N
α= − −

 
5 ,

r

A
P N
α=

 
( )1 2

6 4 3 ,A A
c rA n S S A e A e= + +

 

( )10 4 31  ,c rA S S A A= + +  7 6 10 ,A A A= −  8 4 ,c rA S S A= −  9 3 ,c rA S S A= −  

( )11 4 8 ,r mA G A G A= − +  ( )12 3 9 ,r mA G A G A= − +  13 7 ,mA G A= −  

( )14 5 10 ,r mA G A G A= − +  
11

15 2
1

,AA
A M

=
−

 12
16 2

2

,AA
A M

=
−  

17 14 ,A A M= −  

18 13 ,A A M= −  

( ) 1 2
19 15 16 17 15 16 17 18

1 ,A AM
M M

A A A A e A e A e A A U
e e−

⎡ ⎤= − + + − − − − +⎣ ⎦−
20 19 15 16 17A A A A A= − − − −  

 Now in order to obtain the solution of the first order equations, we introduce the 
stream function 1ψ defined by: 

 
1 1

1 1 ,       u v
y x

ψ ψ∂ ∂
= − =

∂ ∂  
(34) 

 On elimination of p , the equations (24), (25), (27) and (28) yield: 

 ( )0 1, 1, 0 1, 1, 1, 1, 1, 1, 1,2xyy xxx x xxxx xxyy yyyy r y m y yyu u G T G C Mψ ψ ψ ψ ψ ψ ψ′′+ − = + + − − −
 (35) 

  ( ) ( )1, 1, 1, 1, 0 1, 1, 0 1xx yy r u xx yy r x x rT T P D C C P u T T P NTψ ′+ + + = + +
 (36) 

 
( ) ( )1, 1, 1, 1, 0 1, 1, 0

1
xx yy r xx yy x x

c

C C S T T u C C
S

ψ ′+ + + = +
 

(37) 

 Considering the transformations ( ) ( ) ( )1 1 1,     ,    i x i x i xe y T e y C e yλ λ λψ ψ θ φ= = =  
the equations (35), (36) and (37) reduce to  

 ( ) ( )2 3 4
0 0 02  iv

r mi u M i u i u G Gψ ψ λ λ ψ λ λ λ θ φ′′ ′′ ′ ′− + + + + + = +
 (38) 

 ( ) ( )2 2
0 0r r r u rP N Pu i P D Pi Tθ θ λ λ λ φ φ λψ′′ ′ ′′ ′− + + + − + =

 (39) 

 ( ) ( )2 2
0 0c c r cS u i S S i S Cφ φ λ λ λ θ θ λ ψ′′ ′′ ′− + + − + =

 (40) 
 Subject to the relevant boundary conditions: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 00 ,   0,   0 ,   0     at 0y u y y T y C yψ ψ θ φ′ ′ ′ ′= = = − = − =  (41) 

 ( ) ( ) ( ) ( )0,          0,   0,            0              at 1y y y y yψ ψ θ φ′ = = = = =  (42) 
 We assume the series expansion for ,   and ψ θ φ  as follows: 

 ( ) ( ) ( )2
0 1 2y y yψ ψ λψ λ ψ= + + + − − − − − − − − − −  (43) 

 ( ) ( ) ( )2
0 1 2y y yθ θ λθ λ θ= + + + − − − − − − − − − − −   (44) 
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 ( ) ( ) ( )2
0 1 2y y yφ φ λφ λ φ= + + + − − − − − − − − − − −  (45) 

 Substituting (43), (44) and (45) in the equations (38), (39), (40), (41) and (42) and 
by equating the coefficient of 0 1 2,   and λ λ λ , and neglecting the terms of order greater 
than or equal to ( )3O λ , the following ordinary differential equations are obtained: 

 0 0 0 0
iv

r mM G Gψ ψ θ φ′′ ′ ′− = +  (46) 

 1 0 0 1 0 0 1 1
iv

r miu M iu G Gψ ψ ψ ψ θ φ′′ ′′ ′′ ′ ′− − + = +   (47) 

 2 2 0 1 0 1 0 2 22  iv
r mM iu iu G Gψ ψ ψ ψ ψ θ φ′′ ′′ ′′ ′′ ′ ′− − + − = +  (48) 

 0 0 0 0 iv
r r uP N P Dθ θ φ′′− + =   (49) 

 1 0 0 1 1 0 0
iv

r r r u rP iu P N P D P i Tθ θ θ φ ψ′′ ′− − + =   (50) 

 2 0 2 0 1 0 2 1 0
iv

r r r u r u rP N Pu i P D P D P i Tθ θ θ θ φ φ ψ′′ ′− − − − + =  (51) 

 0 0 0 c rS Sφ θ′′ ′′+ =   (52) 

 1 1 0 0 0 0c r c cS S iS u iS Cφ θ φ ψ′′ ′′ ′+ = +   (53) 

 ( )2 0 2 0 0 1 0 1c r c cS S iS u iS Cφ φ θ θ φ ψ′′ ′′ ′− + − = +   (54) 
 Subject to the following boundary conditions: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0 0 0 0 0

0 0 0 0

0 ,   0,     0 ,    0   at   0

0,          0,     0,              0           at   1  

y u y y T y C y

y y y y y

ψ ψ θ φ
ψ ψ θ φ

′ ′ ′ ′ ⎫= = = − = − = ⎪
⎬′ = = = = = ⎪⎭  

(55) 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1

0,          0,      0,              0           at   0

0,          0,      0,              0           at   1   

y y y y y

y y y y y

ψ ψ θ φ
ψ ψ θ φ

′ ⎫= = = = = ⎪
⎬′ = = = = = ⎪⎭  

(56) 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

0,          0,      0,             0           at   0

0,          0,      0,             0           at   1   

y y y y y

y y y y y

ψ ψ θ φ
ψ ψ θ φ

′ ⎫= = = = = ⎪
⎬′ = = = = = ⎪⎭  

(57) 

 The solutions of the equations (46) to (54) subject to the boundary conditions (55), 
(56) and (57) are obtained but not presented here for the sake of brevity. 
 
 
SKIN FRICTION:  
The viscous drag per unit area at any point in the fluid in terms of skin friction xyτ  is 
given by

  

 
 xy

u v
y x

τ μ ⎛ ⎞∂ ∂= +⎜ ⎟∂ ∂⎝ ⎠
 

 The non dimensional skin friction xyτ at any point is specified by:  

 
( ) ( ) ( )

2

0 1 12
xy i x i x

xy

d
u y e u y i e v yλ λτ

τ ε ελ
ρυ

′ ′ ′= = + +  

 At the wavy wall cos ,y xε λ= the co-efficient of skin friction is given by: 
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( ) ( )
( )

0
0 0 1cos

0
0 0

Re 0 0

where  0

i x i x
w xy y x

e u e u

u

λ λ
ε λ

τ τ τ ε

τ
=

′′ ′⎡ ⎤⎡ ⎤= = + +⎣ ⎦ ⎣ ⎦

′=
 

 At the flat wall 1,y = the co-efficient of skin friction is determined by:  

 
( )0

1 1 11
Re 1i x

xy y
e uλτ τ τ ε

=
′⎡ ⎤⎡ ⎤= = +⎣ ⎦ ⎣ ⎦ ,  

( )0
1 0where  1uτ ′=   

 
 
HEAT TRANSFER COEFFICIENT:  
The non dimensional heat transfer co-efficient in terms of Nusselt number Nu  is 
given by:  

 
( ) ( ) ( )1

0 0
i xTTNu T y T y e y

y y
λε ε θ∂∂ ′ ′ ′= = + = +

∂ ∂
 

 At the wavy wall cos ,y xε λ=  it is as under: 

 
( ) ( )0

cos

cos cosi x
w

y x

Nu T x e x
y

λ

ε λ

θ ε λ ε θ ε λ
=

⎡ ⎤∂ ′ ′= = +⎢ ⎥∂⎣ ⎦

( ) ( ) ( ) ( )0 0                              0 + cos  0 + 0 cos 0i xT xT e xλε λ ε θ ε λ θ′ ′′ ′ ′′⎡ ⎤= +⎣ ⎦
( ) ( ) ( ) 2

0 0                              0 + cos  0 + 0          (neglecting  )i xT xT e λε λ ε θ ε′ ′′ ′=

( ) ( ) ( )0 0
0 0 0 0                              + Re 0 0  ,   where   0i x i xNu e T e Nu Tλ λε θ′′ ′ ′⎡ ⎤= + =⎣ ⎦  

 At the flat wall 1,y =  the Nusselt number is represented by: 

 

( ) ( )

( ) ( )

1 0
1

0 0
1 1 0

= = 1 + 1

                     + Re 1  ,  where  1

i x

y

i x

Nu T e
y

Nu e Nu T

λ

λ

θ ε θ

ε θ
=

⎡ ⎤∂ ′ ′⎢ ⎥∂⎣ ⎦

′ ′⎡ ⎤= =⎣ ⎦

  

 
 
MASS TRANSFER CO-EFFICIENT: 
The non dimensional mass transfer co-efficient in terms of Sherwood number Sh  is 
given by: 

 
( ) ( ) ( )1

0 0
i xCCSh C y C y e y

y y
λε ε φ∂∂ ′ ′= = + = +

∂ ∂  
 At the wavy wall cos ,y xε λ= the Sherwood number is as follows: 

 

( ) ( )

( ) ( ) ( )
( ) ( )

0
cos

2
0 0

0 0
0 0 0

cos cos

                             0 cos 0 0         (neglecting )

                             Re 0 0  ,    where 

i x
w

y x

i x

i x i x

CSh C x e x
y

C xC e

Sh e C e Sh

λ

ε λ

λ

λ λ

ε λ ε φ ε λ

ε λ ε φ ε

ε φ

=

⎡ ⎤∂ ′ ′= = +⎢ ⎥∂⎣ ⎦

′ ′′ ′= + +

′′ ′⎡ ⎤= + +⎣ ⎦ ( )0 0C′=

 

 At the flat wall 1,y = the Sherwood number is defined by: 
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( ) ( ) ( )0

1 0 1
1

= =C 1 + e 1 = Re e 1  ,i x i x

y

CSh Sh
y

λ λε φ ε φ
=

⎡ ⎤∂ ′ ′ ′⎡ ⎤+⎢ ⎥ ⎣ ⎦∂⎣ ⎦
  

( )0
1 0where     C 1Sh ′=  

 The figures 1 to 6 represent the variations of the velocity u  of the fluid versus y  
under the effects of radiation parameter ,N  Velocity of the flat wall ,U  Hartmann 
number ,M  Thermal Grashof number ,Gr  Solutal Grashof number ,Gm  and Heat 
source parameterα . From these figures it is noticed that the velocity fluid increases 
as ,  ,   and U Gr Gm α  increases and decreases as and N M  increases. This indicates a 
growth in the fluid motion owing to a rise in the velocity of the flat wall and under the 
effect of buoyancy forces and heat generating source whereas the fluid motion is 
retarded due to the imposition of the thermal radiation and the transverse magnetic 
field.  
 The behaviours of the temperature field T against y under the influence of the 
parameters ,  ,   and N Sr Du α are demonstrated through figures 7 to 10. It is obvious 
from these figures that the fluid temperature T is augmented as α is increased and it 
falls with a rise in each of ,   and N Sr Du . Hence, it is inferred that the fluid 
temperature falls down under the influence of the thermal radiation, thermal-diffusion 
and diffusion-thermo, but it rises up due to an increase in the strength of the heat 
generating source. 
 The variations of species concentration C  versus y  under the influence of 
radiation parameter ,N  Schmidt number ,Sc  Soret number ,Sr and Dufour number 
Du  are presented in figures 11 to 14. It is observed from these figures that the 
concentration level of the fluid is boosted on account of the increasing values of 

,  ,   and .N Sc Sr Du  In other words, the thickness of the concentration boundary layer 
decreases under the effect of mass diffusion whereas the thickness of the 
concentration boundary layer increases under the effects of thermal radiation, 
thermal-diffusion and diffusion-thermo. 
 The nature of skin friction τ  at both the wavy wall and uniformly moving parallel 
flat wall is demonstrated in figures 15, 16 and 17. It is inferred that the magnitude of 
the viscous drag at the wavy wall exhibits an increase with an increase in the plate 
velocity U whereas it decreases at the flat wall as the plate velocity is raised. 
However, the magnitudes of the viscous drag at both the walls fall down under the 
influence of thermal radiation and Dufour effects. From all the figures 15 to 17, it is 
clear that the imposition of the transverse magnetic field (M) leads to a decrease in the 
magnitude of viscous drag at the wavy wall. 
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Figure 1: Velocity u versus  under  for Pr .71,  .2,  .5,  .6,  

1,  1,  2,  2,  5,  1,  ,  .001,  .01,  1
2

y N Du M Sc

Sr Gr Gm m n x Uπα λ λ ε

= = = =

= = = = = = = = = =
 

 
Figure 2: Velocity u versus  under  for Pr .71,  .2,  .5,  .6,  

1,  1,  2,  2,  .5,  5,  1,  ,  .001,  .01,
2

y U Du M Sc

Sr Gr Gm N m n x πα λ λ ε

= = = =

= = = = = = = = = =
 

 
Figure 3: Velocity u versus  under  for Pr .71,  .2,  .6,  1,

1,  1,  2,  2,  .5,  5,  1,  ,  .001,  .01
2

y M Du Sc Sr

U Gr Gm N m n x πα λ λ ε

= = = =

= = = = = = = = = =
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Figure 4: Velocity u versus  under  for Pr .71,  .2,  .6,  1,

1,  1,  .5,  2,  .5,  5,  1,  ,  .001,  .01
2

y Gr Du Sc Sr

U M Gm N m n x πα λ λ ε

= = = =

= = = = = = = = = =
 

 
Figure 5: Velocity u versus  under  for Pr .71,  .2,  .6,  1,

1,  1,  .5,  2,  .5,  5,  1,  ,  .001,  .01
2

y Gm Du Sc Sr

U M Gr N m n x πα λ λ ε

= = = =

= = = = = = = = = =
 

 
Figure 6: Velocity u versus  under  for Pr .71,  .2,  .6,  1,

1,  .5,  2,  2,  .5,  5,  1,  ,  .001,  .01
2

y Du Sc Sr

U M Gr Gm N m n x

α
πλ λ ε

= = = =

= = = = = = = = = =
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Figure 7: Temperature T versus  under  for Pr .71,  .2,  .6,  1,

1,  1,  .5,  2,  2,  5,  1,  ,  .001,  .01
2

y N Du Sc Sr

U M Gr Gm m n x πα λ λ ε

= = = =

= = = = = = = = = =
 

 
Figure 8: Temperature T versus  under  for Pr .71,  .2,  .6,  1,

1,  .5,  2,  2,  5,  1,  1,  ,  .001,  .01
2

y Sr Du Sc

U M Gr Gm m n N x

α
πλ λ ε

= = = =

= = = = = = = = = =
 

 
Figure 9: Temperature T versus  under  for Pr .71,  .6,  1,  1,  

1,  .5,  2,  2,  5,  1,  1,  ,  .001,  .01
2

y Du Sc Sr

U M Gr Gm m n N x

α
πλ λ ε

= = = =

= = = = = = = = = =
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Figure 10: Temperature T versus  under  for Pr .71,  .2,  .6,  1,

1,  .5,  2,  2,  5,  1,  1,  ,  .001,  .01
2

y Du Sc Sr

U M Gr Gm m n N x

α
πλ λ ε

= = = =

= = = = = = = = = =
 

 
Figure 11: Concentration C versus  under  for Pr .71,  .2,  .6,  1,

 1,  1,  .5,  2,  2,  5,  1,  ,  .001,  .01
2

y N Du Sc Sr

U M Gr Gm m n x πα λ λ ε

= = = =

= = = = = = = = = =
 

 
Figure 12: Concentration C versus  under  for Pr .71,  .2,  1,  1,

1,  .5,  2,  2,  5,  1,  1,  ,  .001,  .01
2

y Sc Du Sr

U M Gr Gm m n N x

α
πλ λ ε

= = = =

= = = = = = = = = =
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Figure 13: Concentration C versus  under  for Pr .71,  .2,  .6,  1,

 1,  .5,  2,  2,  5,  1,  1,  ,  .001,  .01
2

y Sr Du Sc

U M Gr Gm m n N x

α
πλ λ ε

= = = =

= = = = = = = = = =
 

 
Figure 14: Concentration C versus  under  for Pr .71,  .6,  1,  1,

 1,  .5,  2,  2,  5,  1,  1,  ,  .001,  .01
2

y Du Sc Sr

U M Gr Gm m n N x

α
πλ λ ε

= = = =

= = = = = = = = = =
 

 
Figure 15: Skin friction  versus  under for Pr .71,  .2,  .6,  1,

 1,  2,  2,  5,  1,  1,  ,  .001,  .01
2

M U Du Sc Sr

Gr Gm m n N x

τ
πα λ λ ε

= = = =

= = = = = = = = =
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Figure 16: Skin friction  versus  under for Pr .71,  .2,  .6,  1,

 1,  2,  2,  5,  1,  1,  ,  .001,  .01
2

M N Du Sc Sr

Gr Gm m n U x

τ
πα λ λ ε

= = = =

= = = = = = = = =
 

 
Figure 17: Skin friction  versus  under for Pr .71,  .6,  1,  1,  

 2,  2,  5,  1,  1,  1,  ,  .001,  .01
2

M Du Sc Sr

Gr Gm m n N U x

τ α
πλ λ ε

= = = =

= = = = = = = = =
 

 
 
CONCLUSIONS: 

• The fluid motion is retarded under the application of thermal radiation and the 
transverse magnetic field and accelerated under the effect of plate velocity. 

• An increase in each of radiation parameter, Soret number and Dufour number 
leads the fluid temperature to fall. 

• The thickness of the concentration boundary layer increases under thermal 
radiation, Soret and Dufour effects. 

• The thermal radiation or diffusion-thermo effect leads to a fall in the 
magnitude of the viscous drag at the wavy wall as well as at the flat wall.  

• Finally, it may be concluded that the radiation effect, Soret effect and Dufour 
effect play a significant role in controlling the flow and transport 
characteristics, under the present model for flow, heat and mass transfer.  
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NOMENCLATURE: 
Kλ  Absorption co-efficient  
g  Acceleration due to gravity 
ε  Amplitude parameter 

,  x y  Cartesian co-ordinates 
μ  Coefficient of viscosity 
β  Coefficient of volume expansion for heat transfer 

sC  Concentration susceptibility 

MD  Coefficient of mass diffusion  
Q  Constant heat addition / absorption 
d  Distance between two walls 

sρ  Density of the fluid in static condition 

uD  Dufour number 
σ  Electrical conductivity 
p  Fluid pressure 
ρ  Fluid density 
λ  Frequency parameter   
T  Fluid temperature 

sT  Fluid temperature in static condition 

rG  Grashof number for heat transfer 

mG  Grashof number for mass transfer 
α  Heat source parameter 
υ  Kinematic viscosity 

mT  Mean fluid temperature 
M  Magnetic parameter 

be λ  Plank function 

sp  Pressure of the fluid in static condition 

rP  Prandtl number 
N  Radiation parameter 
B  Strength of the applied magnetic field 
C  Species concentration 

pC  Specific heat at constant pressure 

wC  Species concentration at the wavy wall 

1C  Species concentration at the flat wall 

rS  Soret number   

cS  Schmidt number 
k  Thermal conductivity 
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wT  Temperature of the wavy wall 

1T  Temperature of the flat wall 

TK  Thermal diffusion ratio 
,  u v  Velocity components 

β  Volumetric coefficient of the expansion with species concentration 
U  Velocity of the flat wall   
m  Wall temperature ratio 
n  Wall concentration ratio 
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