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ABSTRACT: 
 

In this paper we have studied the unsteady flow of a Visco-elastic liquid in 
the boundary layer around a body of revoluation in a circular cylinder when 
the body oscillates harmonically on the liquid at rest. We conclude that the 
dividing stream lines move away from the wall of the cylinder. The thickness 
of the inner vertex system increases and the intensity of the secondary flow 
is greater near the solid boundary. 
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1. INTRODUCTION: 
In the recent past, significant theoretical and experimental investigations have been 
performed on simple geometries to understand the role of elasticity on the flow of 
fluids. Again in the past few decades due to number of applications in industrial 
manufacturing process, the problem of boundary layer flow has attracted 
considerable attention of researchers. Examples of such technological process are 
hot rolling, wire drawing, glass-fiber and paper production. Some of the most 
notable of these are studied by Sakiadis (1961), Tsou et al. (1967), and Crane, L.J. 
(1970). Here we see that the growth of unsteady boundary layer where the body 
oscillates harmonically with the time in a liquid at rest is of great physical 
importance. Initially Schlichting (1932) obtained the solution of the two dimensional 
non-steady boundary layer equations for a viscous liquid where the free stream 
oscillates harmonically with time. The same type of flow of a fluid between two 
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concentric cylinders which could be entirely in response to the fluctuations in the 
velocity of either inner or outer cylinder has been considered by Uchida (1956). 
Chang (1974) and Schowalter (1975) considered the flow of visco-elastic liquid near 
an oscillating cylinder. Boundary layer flows in a visco-elastic liquid of oscillating 
cylinder has been considered by Chang (1977). Rath and Jena (1979) studied the flow 
of a viscous fluid generated in response to fluctuation in the axial velocity of the 
outer cylinder. Biswal, Mishra and Pratihari (1985) studied the above problem in case 
of visco-elastic liquid. Flow and heat transfer in a visco-elastic fluid over a stretching 
sheet is studied by Dhanpat and Gupta (1989). Ahmad, Patel and Siddappa (1990) 
studied the visco-elastic boundary layer flow past a stretching plate and heat 
transfer. The same problem was studied with suction and heat transfer by Ahmad et 
al. (1991). 
Visco-elastic boundary layer flow past a stretching plate with suction heat transfer 
with variable conductivity is studied by Ahmad and Marwah (1999). The same type 
of flow is applicable in bio fluid dynamics. Here the flow of non-Newtonian visco-
elastic fluids in a channel over a stretching sheet has been attracted attention of 
researchers because of its many applications in engineering and industry. Datti et al. 
(2004) studied above type of fluids and got interesting results. Misha et al. (2011) 
studied Hydro magnetic flow and heat transfer of a second grade visco-elastic fluid in 
a channel with oscillatory stretching walls. This problem is also applied to dynamics 
of blood flow. In 2012 Sahoo et al. studied the flow and heat transfer of visco-elastic 
liquids between walls having periodic deformation. Prior to this Andesson et al. 
(2001) considered the basic flow solution for shear-thickening and shear-thinning 
power law fluids. But the others overlooked the importance of matching this 
boundary layer solution to an external flow. Denier and Hewitt (2004) addressed this 
problem and presented the corrected solution for both cases. Few years back, 
Ahmadpour and Sadeghy (2013) addressed the problem of the flow due to a rotating 
disk when one considers Bingham plastic fluids. The authors have claimed to have 
found an exact solution to the problem and are only able to present numerical 
solutions for specific values of Reynolds number and dimensionless radius of the 
disk. Griffiths (2015) has considered the boundary layer flow due to a rotating disk 
for a number of generalized Newtonian fluid models. In this paper, the flow of a 
visco-elastic liquid in the boundary layer around a body of revolution in particular 
reference to a circular cylinder has been studied when the body oscillates 
harmonically on the liquid at rest. In a way, this problem is an extension of the work 
done by Griffiths (2015). 
 
 
2. BOUNDARY LAYER EQUATIONS 
Here we need to solve the equations of boundary layer over a body of revoluation 
when the stream is parallel to its axis. In Cartesian frame of reference, we can write 
the modified Navier-Stokes equations in the form 
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We now make the usual boundary layer assumptions of the viscous flow theory. The 
same assumptions are also applicable in visco-elastic case with in the boundary 
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 are assumed to be O(1), and y to be O( ) where  is the 

thickness of the boundary layer near a solid boundary 0y . From the equation of 
continuity, it can be easily seen that  ) O(v . In order that the viscous, visco-elastic 
and inertia terms in the equation of motion shall be of same order of magnitude, it is 
necessary that 
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Under the above conditions, the boundary layer equations are 
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3. SOLUTION OF BOUNDARY LAYER EQUATIONS 
Here we solve the boundary layer equations (2) and (3) subject to the boundary 
conditions 
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Where ),( txU  denotes the partial flow about the body of revolution. The pressure in 
the in viscid flow is given by 
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Introducing the expression above for 
x
p

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 into equation (2) we have 
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In order to solve equation (6) we apply the general approximation as follows 
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Introducing the above in equation (6), we get 



30  A.C.Sahoo and T.Biswal 

t
U

yt
uk

y
uv

t
u

















2
0

3
*

2
0

2
0  (7) 

and 
















































3
0

3

02
0

2
0

2
0

3

02
0

2
0*

0
0

0
02

1
3

*
2
1

2
1

y
uv

y
v

y
u

yx
uu

y
u

y
uk

y
uv

x
uu

x
UU

yt
uk

y
uv

t
u

 (8) 

Boundary conditions (4) give 
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Now we take the potential flow about the body of revolution to be 
)cos()(),( 0 ntxUtxU   (10) 

In complex notation, we take it as 
exp(int))(),( 0 xUtxU   (11) 

Here only the real parts of the complex quantities in problem have physical meaning 
attached to them. We introduce the dimensionless quantity 
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And assume that the first approximation to the stream function 0  is of the form 
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From equation (7) and (14), we get 
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Where
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It is clear that   is small enough so that its second and higher powers can be 
neglected. 
The differential equation (16) is to be solved under the boundary conditions 
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Solving (16) with the conditions (17), we get 
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From (14) and (18), we get 
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Changing to real notation, we obtain 
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Here the viscous solution is obtained a particular case when 0 . 
We express the second approximation to the stream function 1  in the form 
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Real parts of equations (11), (14), (15), and (22) can be written in the form 
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Where the bar over a symbol denotes the corresponding conjugate complex 
quantity. 
Substituting (23)-(26) in (8) and equating the coefficients of like terms, we get the set 
of differential equations. 
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The corresponding boundary conditions are as follows 
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Solving the equations (27)-(30) subject to the boundary conditions (31) and (32), we 
get 
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It is observed that the second approximation contains a steady state term which 
does not vanish outside the boundary layer that is at a large distance from the body. 
The velocity field, correct to the second approximation can be written as 
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Taking r(x)=Constant, the body of revolution becomes a circular cylinder. In that case 
the circular cylinder oscillates in a stream of velocity U . 
The potential flow in this case is given by 
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In order to consider the steady streaming in the potential flow, let us consider the 
average velocity component u  which is defined as 
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


2

02
udtuu  (40) 

From (39) and (40), we get 

)(2
00 F

dx
dU

n
Uu   (41) 

Whereas from (11) and (38), we get 
)/sin()(0 RxUxU   (42) 

The stream function corresponding to (41) is given by 

)(1/ 2
0

0  F
ndx

dUUn  (43) 

From (42) and (41), we have 
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)()/2sin(/)/)(2/( 2
2  FRxnRnU  

Using the dimensionless parameter )/( Rxx  , the non-dimensional stream function 
will be given by 
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Integrating (35) subject to the condition in (31), we get 
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Neglecting the terms containing second and higher powers of  , it can also be seen 
that 

4
4
3)(2 F

, 
Which in Newtonian case becomes 

4
3  where 0 . 

 
 
3. DISCOUSSION OF THE RESULTS 
In this paper we have studied the unsteady flow of visco-elastic liquid in the 
boundary layer around a circular cylinder, when r(x)=constant, the solution obtained 
is not a uniformly valid solution except for certain value of the elastic parameter   
which is 16/3 (in the first order approximation). This is because the solution 
does not satisfy the boundary conditions at infinity due to the boundary layer 
approximation. 
From the equation (44), it is seen that for 00,5.00  orx   according as 

00)(2  orF  . Also when 0)(2 F , then 0 . From the fig-1, it can be seen 
that 0)(2 F  at 04.0,2.0,0.065.3,14.3,70.2   for  respectively. We conclude 
that the dividing streamlines move away from the wall of the cylinder. 
The effects of visco-elasticity of the liquid on 2F   and 4F   have been presented in fig-
2. An examination of this figure shows that the effect of elasticity of the liquid is to 
increase both 2F   and 4F  . It means the thickness of the inner vertex system 
increases and the intensity of the secondary flow near solid boundary increases. In a 
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thin liquid layer near the rigid body 2F   first increases and then decreases. It means 
that the secondary flow is greater near the solid boundary. 
 
CAPTION OF THE DIAGRAMS 
Figure 1: 0)(2 F at  04.0,2.0,0.065.3,14.3,70.2 andfor    

Figure 2: The effect of the elasticity of the liquid on 2F   and 4F   for different values of
 . 
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