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ABSTRACT:

In this paper we have studied the unsteady flow of a Visco-elastic liquid in
the boundary layer around a body of revoluation in a circular cylinder when
the body oscillates harmonically on the liquid at rest. We conclude that the
dividing stream lines move away from the wall of the cylinder. The thickness
of the inner vertex system increases and the intensity of the secondary flow
is greater near the solid boundary.

Key Words: Unsteady flow, Boundary Layer, Stream function, Circular
Cylinder

1. INTRODUCTION:

In the recent past, significant theoretical and experimental investigations have been
performed on simple geometries to understand the role of elasticity on the flow of
fluids. Again in the past few decades due to number of applications in industrial
manufacturing process, the problem of boundary layer flow has attracted
considerable attention of researchers. Examples of such technological process are
hot rolling, wire drawing, glass-fiber and paper production. Some of the most
notable of these are studied by Sakiadis (1961), Tsou et al. (1967), and Crane, L.J.
(1970). Here we see that the growth of unsteady boundary layer where the body
oscillates harmonically with the time in a liquid at rest is of great physical
importance. Initially Schlichting (1932) obtained the solution of the two dimensional
non-steady boundary layer equations for a viscous liquid where the free stream
oscillates harmonically with time. The same type of flow of a fluid between two
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concentric cylinders which could be entirely in response to the fluctuations in the
velocity of either inner or outer cylinder has been considered by Uchida (1956).
Chang (1974) and Schowalter (1975) considered the flow of visco-elastic liquid near
an oscillating cylinder. Boundary layer flows in a visco-elastic liquid of oscillating
cylinder has been considered by Chang (1977). Rath and Jena (1979) studied the flow
of a viscous fluid generated in response to fluctuation in the axial velocity of the
outer cylinder. Biswal, Mishra and Pratihari (1985) studied the above problem in case
of visco-elastic liquid. Flow and heat transfer in a visco-elastic fluid over a stretching
sheet is studied by Dhanpat and Gupta (1989). Ahmad, Patel and Siddappa (1990)
studied the visco-elastic boundary layer flow past a stretching plate and heat
transfer. The same problem was studied with suction and heat transfer by Ahmad et
al. (1991).

Visco-elastic boundary layer flow past a stretching plate with suction heat transfer
with variable conductivity is studied by Ahmad and Marwah (1999). The same type
of flow is applicable in bio fluid dynamics. Here the flow of non-Newtonian visco-
elastic fluids in a channel over a stretching sheet has been attracted attention of
researchers because of its many applications in engineering and industry. Datti et al.
(2004) studied above type of fluids and got interesting results. Misha et al. (2011)
studied Hydro magnetic flow and heat transfer of a second grade visco-elastic fluid in
a channel with oscillatory stretching walls. This problem is also applied to dynamics
of blood flow. In 2012 Sahoo et al. studied the flow and heat transfer of visco-elastic
liquids between walls having periodic deformation. Prior to this Andesson et al.
(2001) considered the basic flow solution for shear-thickening and shear-thinning
power law fluids. But the others overlooked the importance of matching this
boundary layer solution to an external flow. Denier and Hewitt (2004) addressed this
problem and presented the corrected solution for both cases. Few years back,
Ahmadpour and Sadeghy (2013) addressed the problem of the flow due to a rotating
disk when one considers Bingham plastic fluids. The authors have claimed to have
found an exact solution to the problem and are only able to present numerical
solutions for specific values of Reynolds number and dimensionless radius of the
disk. Griffiths (2015) has considered the boundary layer flow due to a rotating disk
for a number of generalized Newtonian fluid models. In this paper, the flow of a
visco-elastic liquid in the boundary layer around a body of revolution in particular
reference to a circular cylinder has been studied when the body oscillates
harmonically on the liquid at rest. In a way, this problem is an extension of the work
done by Griffiths (2015).

2. BOUNDARY LAYER EQUATIONS

Here we need to solve the equations of boundary layer over a body of revoluation
when the stream is parallel to its axis. In Cartesian frame of reference, we can write
the modified Navier-Stokes equations in the form
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We now make the usual boundary layer assumptions of the viscous flow theory. The
same assumptions are also applicable in visco-elastic case with in the boundary
au o°u op
"o ox
thickness of the boundary layer near a solid boundary y =0. From the equation of
continuity, it can be easily seen thatv = O(5 ) . In order that the viscous, visco-elastic

and inertia terms in the equation of motion shall be of same order of magnitude, it is
necessary that

layer, U, are assumed to be O(1), and y to be O(6 ) where § is the
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Under the above conditions, the boundary layer equations are
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3. SOLUTION OF BOUNDARY LAYER EQUATIONS
Here we solve the boundary layer equations (2) and (3) subject to the boundary
conditions

y=0u=v=0

(4)
y — oo,u > U(X,t)
Where U (x,t) denotes the partial flow about the body of revolution. The pressure in
the in viscid flow is given by
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Introducing the expression above for Z—p into equation (2) we have
X
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In order to solve equation (6) we apply the general approximation as follows
u(x, y,t) =uo (X, y, t) +u(x, y,t)}
VY1) = Vo (X, Y1) +vi(X, )
Introducing the above in equation (6), we get
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Boundary conditions (4) give
y=0,u,=0=u, } )
y = o,u, =U(x,t),u; =0
Now we take the potential flow about the body of revolution to be
U (x,t) =U,(x) cos(nt) (10)
In complex notation, we take it as
U (x,t) =U,(x)exp(int) (11)

Here only the real parts of the complex quantities in problem have physical meaning
attached to them. We introduce the dimensionless quantity

n=yn/v)"? (12)
And assume that the first approximation to the stream function v, is of the form
Yo (X y,t) ==/ n)"2U, (x).r () F (m)e"™ (13)
Hence in view of equation of continuity, we have
ru, :UOI’F’(n)ei”t (14)
du dr i
And rv, =—(o/n)"3 r—2+U,— |F(n)e™ 15
: (u)[dxudx}(n) (15)

From equation (7) and (14), we get
iF'—1-ia)F" =i

1-ia) (16)
Where
a=k'n/

It is clear that o is small enough so that its second and higher powers can be
neglected.
The differential equation (16) is to be solved under the boundary conditions

n=0:F(n)=F’(n)=0} an

n—wo:F'(n)=1

Solving (16) with the conditions (17), we get

F'(n)=1—e""" (18)
_[ﬂ(a)+a]1/2+i[ﬂ(a)—a]1/2 B .

Where p = ﬁﬂ(a) =p,+1ip,

And B(a) =V1+a? (19)
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From (14) and (18), we get

Uy (X, ¥, 1) =U, (x)[L—eP" " (20)
Changing to real notation, we obtain

u,(x,y,t)=U 0(x)[cos(nt) —e M cos(p,n — nt)J

Here the viscous solution is obtained a particular case whena =0.

We express the second approximation to the stream function y, in the form
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Real parts of equations (11), (14), (15), and (22) can be written in the form

Hence u,(x,y,t) =

U (X,t) _ (UO /2)[eint + e—int] (23)
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UlzﬁdUO —{F 2int +Fé_2mt}+ F/:l_'_u_g[ {F e2|nt +Fe 2|nt}+|: :l (26)
n dx |2 nr dx

Where the bar over a symbol denotes the corresponding conjugate complex
quantity.

Substituting (23)-(26) in (8) and equating the coefficients of like terms, we get the set
of differential equations.

2iF/— (1-2ia) K= 1[1— F2 4 FF”]—O{F’F’”—%(F”Z +FF ‘V)} 27)
m 1 1 e " ” 1 ! m —'—m 1 ” r iv iv
CF)=C-CFF 4 (FF +FFY—a| FF"+FF"-ZFF' - (FF +FFY)|  (29)
2 2 2 2
2iF3’—(1—2ia)F3”’:%FF”——a(F”2+FF‘V) (29)
—F‘{”:%(FF” FF")-= [ FFE"+> (FF'V+FF'V)} (30)

The corresponding boundary conditions are as follows

n=0:|’:1=F1=0,F’2=F2=0 (31)
F,=F, =0,F,=F, =0

:F’—>0,F’—>0
T (32
F, = finite F, = finite

Solving the equations (27)-(30) subject to the boundary conditions (31) and (32), we
get
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It is observed that the second approximation contains a steady state term which

does not vanish outside the boundary layer that is at a large distance from the body.
The velocity field, correct to the second approximation can be written as

U, dUg (—, 2int Uz dr 2int
— Y Fe n F’ ~o0o = Fre in Fr 37
o U e ol (37
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u= Re{UOF’eint +

Taking r(x)=Constant, the body of revolution becomes a circular cylinder. In that case
the circular cylinder oscillates in a stream of velocityU .
The potential flow in this case is given by

U(x,t)=U_ sin(zx/R)e™ (38)

Where R/ isthe radius of the cylinder. In this case equation (37) is reduced to

u= Re[UOF’e‘”‘ +U—n° Wo frezm F;}} (39)
X

In order to consider the steady streaming in the potential flow, let us consider the
average velocity component U which is defined as
u 2r

u=—/| udt (40)
2 Y0

From (39) and (40), we get

Uzﬂﬁ F. (1) (41)
n dx

Whereas from (11) and (38), we get

U,(x) =U_sin(zx/R) (42)

The stream function corresponding to (41) is given by

_ 1

7 =~oiny, dd%ﬁ E,(n) (43)

From (42) and (41), we have
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w =(U2/2n)(z/R)Wu/nsin(2zx/ R)F,(n)
Using the dimensionless parameter x’ = (x/R), the non-dimensional stream function
will be given by

v =22 sin2m)F, () (44)

mvolnUZ

Integrating (35) subject to the condition in (31), we get
F,(n)=M,-M;n- Mme_2 P Mlse_pl’7 cos(p,n) - MlGE_pm sin(p,n)
—M,,ne"?" cos(p,n) —M gne™" sin(p,n)
Where M, =M, + M, M, =M,M,, =M, /2p,
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Neglecting the terms containing second and higher powers of « , it can also be seen
that

(45)

M15 =

MlG

M17 =

F/(x0) = —§+4a Which in Newtonian case becomes —E where a =0.
5(0) n n

3. DISCOUSSION OF THE RESULTS

In this paper we have studied the unsteady flow of visco-elastic liquid in the
boundary layer around a circular cylinder, when r(x)=constant, the solution obtained
is not a uniformly valid solution except for certain value of the elastic parameter o
which is @ =3/16 (in the first order approximation). This is because the solution
does not satisfy the boundary conditions at infinity due to the boundary layer
approximation.

From the equation (44), it is seen that for 0 < x' < 0.5, > 0or <0 according as
F,(n)>00r <0. Also when F,(n)=0, then v =0. From the fig-1, it can be seen
that F,(n)=0 at n=2.70,3.14,3.65 fora =0.0,0.2,0.04 respectively. We conclude
that the dividing streamlines move away from the wall of the cylinder.

The effects of visco-elasticity of the liquid on F, and F, have been presented in fig-
2. An examination of this figure shows that the effect of elasticity of the liquid is to
increase both F, and F, . It means the thickness of the inner vertex system
increases and the intensity of the secondary flow near solid boundary increases. In a
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thin liquid layer near the rigid body F, first increases and then decreases. It means
that the secondary flow is greater near the solid boundary.

CAPTION OF THE DIAGRAMS
Figure 1: F,(n)=0 at n=2.70,3.14,3.65 fora = 0.0,0.2,and 0.04

Figure 2: The effect of the elasticity of the liquid on F, and F, for different values of
.
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FIG-2

Sreamlines for Different Valuesof o
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