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Abstract: 

 

A mathematical model is presented here to study the slip effect on Casson 

flow of blood. Here I have considered one dimensional steady flow of blood 

through an axially symmetric but radially non-symmetric stenosed artery, 

where blood behaves like a Casson fluid. The variations of axial velocity, plug 

velocity, flow rate, wall shear stress and pressure gradient have been 

incorporated. The results are shown graphically and discussed. 
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Introduction: 
Stenosis is formed by the accumulation of fats/cholesterol on the arterial wall and 

proliferation of the connective tissue. It is already known that due to the presence of 

stenosis in the lumen of the artery, the nature of blood flow changes from its usual 

state to a distributed flow condition. Many Cardiovascular diseases such as blood 

pressure, atherosclerosis, heart attack and brain haemorrhage are influenced by the 

presence of the arterial stenosis.Stenosis is one of the most wide-spread arterial 

disease. Effect of stenosis on cardiovascular system has been determined by studying 

the flow characteristics of blood in stenotic region of artery. 

 

In view of this some mathematicians have presented various mathematical models to 

study the blood flow characteristics through stenosed artery (Young[1], Lee and 

Fung[2], Shukla et. al [3], Chaturani and Samy [4] and Radhakrishnamacharya et.al 

[5], Verma and Parihar[6], Biswas and Chakraborty [7]) by considering the blood as a 

Newtonian fluid. But since it has been observed that whole blood being permanently a 

suspension of erythrocytes in plasma, Majhi and Nair [8] suggested that under certain 

conditions blood behaves like a non-Newtonian fluid. In view of this many 

researchers study the power law fluid model of blood by giving reason that under 

certain conditions blood behaves like a power law fluid.(Sanjeev Kumar et, al [9], 

Singh and Shah [10]). 
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Some authors have analysed mathematical models (Maruthiprasad and Radhakrishn- 

amacharya [11], Maruthiprasad et.al [12], Siddique et.al [13] ) by considering blood 

as a Herschel-Bulkley type non-Newtonian fluid. Biswaset. al [14] have studied two 

layered pulsatile flow of blood through an arterial tube by considering the core layer 

as Bingham plastic type fluid and the peripheral layer as Newtonian fluid.Sanyal and 

Maiti [15] have investigated two layered mathematical model by taking both the 

layers as Herschel- Bulkley type non-Newtonian fluid. Many authors have used the 

Casson fluid model for mathematical modelling of blood flow (Blair [16], Charm and 

Kurland [17], Aroesty and Gross [18]). Chaturani and Samy [19] analyzed the 

pulsatile flow of Casson fluid through stenosed artery using perturbation method. A 

mathematical model model of blood flow through an irregular arterial mild stenosis is 

developed by Jain et.al [20] and they have observed that if the viscosity of fluid 

increases the velocity of fluid decreases in presence of arterial stenosis. Biswas and 

Laskar [21] have presented a mathematical to study the steady flow of blood through 

a stenosed artery. 

In the present analysis I propose to discuss the slip effect on Casson flow of blood 

through constricted artery. 

 

Mathematical Formulation: 
In this study, I have considered the steady flow of blood through an axially symmetric 

but radially non-symmetric stenosed artery. 

The geometry of stenosis is taken as ( Biswas [21])  

R(z)  = 𝑅0 −
𝛿

2
[ 1+ cos

2𝜋

𝐿0
(z−𝑑 − 𝐿0)];   d≤ 𝑧 ≤ 𝑑 + 𝐿0 

= 𝑅0,   otherwise,         (1) 

where 𝑅0 , the radius of the tube ; R(z), the radius in the stenotic region; 𝐿0 , the 

stenosis length, d indicates its location and 𝛿  be the maximum height of the stenosis , 

L be the length of the artery. 

 
 

Fig 1: Geometry of Flow and Coordinate System 
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Problem and Solution: 

The equation governing the motion is given by 

 0 = −
𝜕𝑝

𝜕𝑧
 + 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏)       (2) 

 

  0 = 
𝜕𝑝

𝜕𝑟
         (3) 

in which 𝜏 represents the shear stress of blood considered as Casson fluid and p, the 

pressure at any point. 

 

The relationship between shear stress and shear rate is given by 

  −
𝜕𝑢

𝜕𝑟
=

1

𝑘
(√𝜏 − √𝜏𝑐)2 , 𝜏 ≥ 𝜏𝑐       (4) 

 

   = 0,                  𝜏 < 𝜏𝑐        (5) 

where u stands for the axial velocity of blood, 𝜏𝑐 is the yield stress and k is the 

coefficient of viscosity. 

The boundary conditions are  

                                                  u = 𝑢𝑠 at r = R(z)                          (6) 

    𝜏 is finite at r = 0,                        (7) 

where𝑢𝑠 is the axial slip velocity. 

Integrating (2) and using the boundary condition (7) we get 

   𝜏  = −
𝑟

2

𝑑𝑝

𝑑𝑧
          (8) 

 

The skin-friction 𝜏𝑅 is given by  

  𝜏𝑅 =  −
𝑅

2

𝑑𝑝

𝑑𝑧
  ,   R = R(z)                  (9) 

From (8) and (9)  

  𝑟𝑝 =
2𝜏𝑐

𝑃
 ,  𝜏𝑅= 

𝑅𝑃

2
 

  

  
𝑟𝑝

𝑅
 = 

𝜏𝑐

𝜏𝑅
= 𝛽, say                                     (10) 

Integrating equation (4) and using the boundary condition (7) the velocity function is 

given by  

    u =  𝑢𝑠+
1

𝑘
[ 

𝜏𝑅

2𝑅
 (𝑅2 − 𝑟2)+𝜏𝑐(𝑅 − 𝑟)−

4

3
√(

𝜏𝑅𝜏𝑐

𝑅
)(𝑅3/2 − 𝑟3/2)] 

         = 𝑢𝑠 +
𝜏𝑅.𝑅

𝑘
 [

1

2
(1 −

𝑟2

𝑅2)+𝛽 (1 −
𝑟

𝑅
) −

4

3
√(𝛽)(1 −

𝑟3/2

𝑅3/2)]                    (11) 

 

The expression for plug velocity is  

  𝑢𝑝 = 𝑢𝑠+
𝜏𝑅.𝑅

𝑘
 (

1

2
−

4

3
√𝛽+𝛽 −

1

6
𝛽2)                        (12) 
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The volumetric flow rate i.e, the flux is given by 

 Q = ∫ 2
𝑅

0
𝜋𝑟𝑢 𝑑𝑟 

            = 𝜋𝑅2[𝑢𝑠+
𝜏𝑅.𝑅

𝑘
(

1

4
+

𝛽

3
−

4

7
√𝛽)] 

When 
𝜏𝑐

𝜏𝑅
≪ 1, replacing 

1

3
 by 

16

49
 in the second term we get  

Q  =𝜋𝑅2[𝑢𝑠+
𝜏𝑅.𝑅

𝑘
(

1

2
−

4

7
√𝛽)2] 

From above we get 

 
𝑄

𝜋𝑅2 − 𝑢𝑠 = 
𝑅

𝑘
(√𝜏𝑅

2
−

4

7
√𝜏𝑐)2 

Thus 𝜏𝑅 = 
16

49
𝜏𝑐+

4𝑘

𝑅
(

𝑄

𝜋𝑅2 − 𝑢𝑠)+
16

7
√

𝜏𝑐𝑘

𝑅
√

𝑄

𝜋𝑅2 − 𝑢𝑠 

In the absence of stenosis the expression for wall shear stress becomes 

 𝜏𝑁 = 
16

49
𝜏𝑐+

4𝑘

𝑅0
(

𝑄

𝜋𝑅0
2 − 𝑢𝑠)+

16

7
√

𝜏𝑐𝑘

𝑅0
√

𝑄

𝜋𝑅0
2 − 𝑢𝑠 

which represents the skin friction for a normal arterial segment. 

The non-dimensional expression for wall shear stress may be put as 

  𝜏̅ = 
𝜏𝑅

𝜏𝑁
 

 

Numerical Computations: 
To illustrate the flow characteristics the results are shown graphically with the help of 

MATLAB – 7.6. To attain the numerical results for axial velocity,  plug velocity, flux 

and the wall shear stress, some parameters have been taken constant with the values  

𝐿0= 1, d = 0.5, k = 2, 𝜏𝑐 = 0.1, 𝑅0 = 1.5, 𝑢𝑠 = 0.05 

Figures 2,3 give the variation of axial velocity for different values of 𝜏𝑐 and 𝑢𝑠 with 

the variation of r. It is observed that axial velocity u decreases with the increase of r 

but the reverse effect occurs when 𝜏𝑐 and 𝑢𝑠 increases. 

Figures 4,5 show the variation of plug velocity 𝑢𝑝 for different values of 𝜏𝑐 and 𝑢𝑠 

with the variation of z. It is found that 𝑢𝑝 decreases up to the zero values of z and then 

increases. 𝑢𝑝decreases with the increase of 𝜏𝑐 but increases with the increase of𝑢𝑠. 

Figures 6,7 illustrate the behaviour of flux Q for different values of 𝜏𝑐 and 𝑢𝑠 with the 

variations of z. It is observed that Q increases up to the zero values of z and then 

decreases. Q increases with both the increase of 𝜏𝑐and 𝑢𝑠 . 

Figures 8,9 depict the variation of wall shearstress 𝜏̅ for different values of 𝜏𝑐 and  𝑢𝑠 

against z. It is found that  𝜏 ̅decreases up to the zero values of z and then increases. It 

is also found that  𝜏̅ decreases with the increase of 𝜏𝑐 for fixed values of z but the 

reverse effect occurs when  𝑢𝑠  increases. 

The variation of pressure gradient is shown in figure-10. It is observed that the 

pressure gradient increases up to the zero values of z and then decreases. It is also 

observed that for fixed values of 𝜏𝑐 and z, the pressure gradient increases with the 

increase of  𝑢𝑠 . 
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Conclusions: 
The present analysis deals with the steady flow of blood through an axially symmetric 

but radially non-symmetric constricted artery and an axial slip velocity is imposed at 

the arterial wall. The blood flow characteristics mainly depends on the wall shear 

stress and pressure gradient. It is clear that thewall shear stress and pressure gradient 

increase with the increase of  𝑢𝑠 . So that slip at the wall of the artery plays a vital role 

in modelling of blood flow. Thus it may be concluded that with the help of slip 

velocity, damages of the vessel wall can be repaired. 

 
Figure-2 
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Figure-4 

 

 

 
Figure-5 
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Figure-6 

 

 

 

 
 

Figure-7 
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Figure-8 

 

 

 
Figure-9 
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Figure-10 
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