Energy Spectrum in Isotropic Turbulent Flows

Steve Anglin

Sc.M., Ph.D.(h.c.) Mathematics Dept., Case Western Reserve University, Cleveland, OH, USA.

Abstract

The three dimensional energy spectrum function E(k) is related to the spectrum tensor Phi for isotropic turbulence and the one dimensional energy spectrum tensor is function phi of I and j with respect to k 1where phi of one and one with respect to k 1 is the Fourier transform of u squared b of 1 times some function f(r)

Keywords: turbulence, turbulent, isotropic, spectrum, function, tensor, energy, fluid dynamics, flow, instability, unstable, velocity, correlation, condition

The Problem:

The three dimensional energy spectrum function E(k) is related to the spectrum tensor below for isotropic turbulence:

$$\Phi_{ij}(\mathbf{k}) = E(k)/4\pi k^2 (\delta_{ij} - k_i k_j/k^2)$$

and

$$\int_0^\infty E(k)dk = \frac{3}{2}\bar{u_1^2}$$

The one dimensional energy spectrum tensor is phi of I and j with respect to k 1 such that below is the Fourier transform of u1 bar squared which shows

$$\phi_{11}(k_1) = \int \int dk_2 dk_3 \frac{E(k)}{4\pi k^2} (1 - k_1^2/k^2)$$

Steve Anglin

And that then

$$E(k) = k^3 \frac{d}{dk} \left[\frac{1}{k} \frac{d\phi_{11}}{dk}\right].$$

Proof:

From above, we define the following spectrum tensor function to be the following:

$$\Phi_{ij}(\mathbf{k}) = E(k)/4\pi k^2 (\delta_{ij} - k_i k_j/k^2)$$
$$E(k) = 4\pi k^2 q(k)$$

Where q(k) is the contributing density in wave number space.

$$\Rightarrow E = \frac{4\pi}{3} tr \delta_i j \int_0^\infty q(k) k^2 dk$$
$$= \int_0^\infty 4\pi k^2 q(k) dk$$
$$= \int_0^\infty E(k) dk = \frac{3}{2} \bar{u}_1^2 = \frac{3}{2} u'^2$$
(isotropy)

However, use 3/2 u one bar squared such that there exists the following:

$$< u_1^2 > = \int_0^\infty E_{11}(\omega) d\omega$$

Where omega is the angular frequency, delta omega is the bandwidth and the numerator below is the filter output:

$$\Rightarrow E_{11}(\omega) = \lim_{\Delta\omega \to 0} \frac{\langle \Delta u_1^2(\omega) \rangle}{\Delta\omega}$$

Now, we define the following for k one:

$$k_1 = \omega / \overline{U}_1$$

Now, this implies the following:

$$\Rightarrow E_{11}(k_1) = \bar{U}_1 E_{11}(\omega)$$

$$\Rightarrow \int_0^\infty E_{11}(\omega) d\omega = \int_0^\infty \frac{E_{11}(k_1) d\omega}{\bar{U}_1} = \int_0^\infty E_{11}(k_1) dk_1 = \langle u_1^2 \rangle$$

$$\Rightarrow E_{11}(k_1) = \int_{-\infty}^\infty \int_{-\infty}^\infty \phi_{11}(k_1, k_2, k_3) dk_2 dk_3$$

$$= \frac{1}{2\pi} \int_{-\infty}^\infty \langle u_1^2 \rangle f(r_1) \cos(k_1, r_1) dr_1$$

$$\Rightarrow E_{11}(k_1) = \int_{k_1}^\infty [(1 - \frac{k_1^2}{k^2}) \frac{E(k)}{k}] dk$$

$$\Rightarrow E(k) = \frac{k^3 d[k^{-1} dE_{11}(k)/dk]}{dk}$$

$$\therefore E(k) = k^3 \frac{d}{dk} [\frac{1}{k} \frac{d\phi_{11}}{dk}].$$

Compliance with Ethical Standards

The author declares that they have no conflict of interest.

REFERENCES

- [1] Hinze, *Turbulence*, 2nd Edition, McGraw Hill (1975).
- [2] Maxey, Lecture Notes of AM247 Turbulent Flows, Brown University (2002).
- [3] Zhou, Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows, Butterworth-Heinemann (2018).