
Journal of Computer Science and Applications. 
ISSN 2231-1270 Volume 6, Number 2 (2014), pp. 115-123 
© International Research Publication House 
http://www.irphouse.com 

 
 

Simulation And Comparison of Various Scheduling 
Algorithm For Improving The Interrupt Latency of 

Real –Time Kernal 
 
 

1.Lavanya Dhanesh 2.Dr.P.Murugesan 
 

1.Research Scholar, Sathyabama University, Chennai, India. 
2.Professor, S.A. Engineering College, Chennai, India. 

Email:1. dhaneshforyou@gmail.com 
 

Abstract 
 

The main objective of the research is to improve the performance of the Real-
time Interrupt Latency using Pre-emptive task Scheduling Algorithm. Interrupt 
Latency provides an important metric in increasing the performance of the 
Real Time Kernal So far the research has been investigated with respect to 
real-time latency reduction to improve the task switching as well the 
performance of the CPU. Based on the literature survey, the pre-emptive task 
scheduling plays an vital role in increasing the performance of the interrupt 
latency. A general disadvantage of the non-preemptive discipline is that it 
introduces additional blocking time in higher priority tasks, so reducing 
schedulability . If the interrupt latency is increased the task switching delay 
shall be increasing with respect to each task. Hence most of the research work 
has been focussed to reduce interrupt latency by many methods. The key area 
identified is, we cannot control the hardware interrupt delay but we can 
improve the Interrupt service as quick as possible by reducing the no of 
preemptions. Based on this idea, so many researches has been involved to 
optimize the pre-emptive scheduling scheme to reduce the real-time interrupt 
latency. Based on the literature survey, A Deadline Monotonic Priority 
Assignment technique is used to reduce the latency with respect to the 
deadline. Deferred pre-emption scheduling and Fixed pre-emptive scheduling 
algorithm’s are used to reduce the interrupt latencies. Thus we employ the Pre-
emptive task scheduling algorithm which preempts and serve the task with 
highest priority The performance of the Interrupt Latency can be analysed 
using the SKYEYE simulator, a tool which gives accurate time of the Interrupt 
Service Routine(ISR). 
 
Keywords: CPU, Performance, Scheduling, Interrupt service, Interrupt 
Latency, Preemption. 



116 Lavanya Dhanesh and Dr.P.Murugesan 
 
Introduction 
Real Time Operating System is considered as efficient when its throughput rate is 
high. They are the embedded devices which are designed for the specific use and are 
expected to meet the specific time deadlines for completing the tasks[1]. For this, the 
response time of the important tasks is most important which can be achieved using 
the priority based task – scheduling[2,3]. This paper puts forth the idea of applying 
the pre-emptive based task scheduling algorithm to reduce the Real time Interrupt 
Latency. Better processor utilization and more flexibility is achieved with the 
scheduling tasks than non-preemptive scheduling. Furthermore, preemptive 
approaches may need less runtime support (e.g. no task ordering required). In this 
paper we present a low-cost algorithm, called the Preemptive Task Scheduling 
algorithm (PTS), which is intended for compile-time scheduling of coarse-grain 
problems. 
 
 
Background 
 
Preemption 
Tasks waits for the processing.The Scheduler assigns priorities and the task with 
highest priority will be scheduled first[4,5].It preempts the current execution if a 
higher priority (more urgent) task or a real-time processes have higher priority arrives. 
 

 
 

Figure 1: Preemption Process 
 
Interrupt Latency(IL): 
The Interrupt Latency is the time from when an Interrupt is triggered until the 
Interrupt process starts. In figure 2.2 there is an overview of the different stages that 
passes when an interrupt occurs. 



Simulation And Comparison of Various Scheduling Algorithm For Improving et.al.  117 

 
 

Figure 2: Interrupt Latency in OSE 
 

S = Time to start the Interrupt Handler 
I = Interrupt Latency 
E = Interrupt process execution time 

 
 
Scheduling theory 
We present an overview of real-time scheduling in this section. A real-time OS kernel 
(scheduler) switches concurrently running tasks based on a scheduling scheme. A task 
is composed of a series of jobs, thus, it is the scheduling scheme that decides which 
job of the task is to run next and for how long[6,7]. Therefore,the scheduler plays a 
crucial role in real-time systems.  
     The main goal of the scheduler is to meet predefined deadlines and, at the same 
time, to increase processor utilization. There are three types of tasks: 
 Periodic task releases each job regularly with the task period Ti.  
 Aperiodic task releases irregularly.  
 Sporadic task is an aperiodic task characterized by a minimum inter arrival 

time between consecutive jobs of the task. 
     A real-time scheduling algorithm ensures that each job is finished before its 
deadline. In hard real-time systems, a scheduling method has to guarantee that each 
job finishes before its deadline. In soft real-time systems, the system is still operable 
even if some jobs occasionally miss their deadlines. In addition to other definitions 
earlier, the processor utilization factor is defined as 
     U = ∑ i=1 Ci / Ti in order to measure the processor utilization of CPU resource, 
where Ci is the worst-case execution time (WCET) and n is the number of tasks in 
process. The preemptive scheduler can stop a running task during its execution 
(preempt the task) to give CPU resources to another ready task. This feature is used 
for CPU time sharing between ready tasks with the same priority. It is also used in 
case of an interrupt which may wake up a task waiting for a signal or for some 
data[8,9]. The woken task should have a higher priority than the current running task 
to be allocated CPU time directly. 
 
 
Context Switch Overhead 
The context switch overhead is defined as the amount of time taken by the operating 
system to switch from one task to another, without any other task or interrupt 
subroutine being executed in between them . In Free RTOS, the procedure of context 



118 Lavanya Dhanesh and Dr.P.Murugesan 
 
switch is visible in the code of tick timer interrupt, which consists of two parts 
excluding the context saving and restoring. Increase the tick count and check if any 
task that is blocked for a finite period, requires its removal from a blocked list and 
placing on a ready list[10] . Set the pointer to the current Task Control Block (TCB) 
to the TCB of the highest priority task that is ready to run. 
 
 
Real – Time Task Scheduling 
In general, real-time systems are required to meet time constraints. Most of them 
adopt either an in-house or commercial real-time operating system (OS). One of the 
important functions of the OS is to schedule concurrently running tasks in order to 
avoid missing of deadline. A real-time task scheduler plays an essential role in 
switching tasks to share the processor resource, and also in ensuring that all tasks to 
be finished before deadline. A real-time scheduler dispatches multiple tasks to be run 
in a CPU to meet deadlines[11]. From now on, we will interchangeably use a real-
time scheduler, an OS task scheduler, and a task scheduler to indicate the task 
scheduler mechanism of a given real-time system. In order to do the scheduling 
analysis and design for real time systems, it is important to obtain related scheduling 
parameters, such as a task execution time and a task period. It is difficult, however, to 
obtain precise scheduling parameters for three reasons:  
 Computing systems consist of many resource queues, i.e., ready queues, event 

queues, semaphore queues, and message queues and the time measurements of 
activities in these interrelated queues are not trivial. 

 Modern CPU makers use more and more advanced technologies to improve 
performance, such as an instruction and a data cache, and an instruction 
pipeline[12]. This makes it troublesome to estimate scheduling parameters.  

 It is a recent trend that even a simple real-time system is composed of 
network-connected distributed nodes. Network-connected systems inherit 
uncertainty that causes difficulties in measuring the scheduling 
parameters[13]. The high degree of uncertainty challenges to the accurate 
measurement of the scheduling parameters. This leads to scheduling errors 
that cause performance degradation (deadline missing) and inefficient 
processor utilization in real-time systems. 

 
 
Existing Scheduling Algorithms 
 
Earliest Deadline First (EDF) 
It is a Preemptive scheduling based on dynamic task priorities.Task with closest 
deadline has highest priority. stream priorities vary with time.Dispatcher selects the 
highest priority task. 
 
 
 
 



Simulation And Comparison of Various Scheduling Algorithm For Improving et.al.  119 

Assumptions 
 Requests for all tasks with deadlines are  
 Periodic 
 The deadline of a task is equal to the end on its period (starting of next) 
 Independent tasks (no precedence) 
 Run-time for each task is known and constant 
 Context switches can be ignored 

 

 
 

Figure 3: EDF Priority order 
  
Rate Monotonic (RM) Scheduling : 
It is a classic algorithm for hard real-time systems with one CPU. Pre-emptive 
scheduling based on static task priorities. 
 
Assumptions 
 Requests for all tasks with deadlines are periodic 
 The deadline of a task is equal to the end on its period (starting of next) 
 Independent tasks (no precedence) 
 Run-time for each task is known and constant 
 Context switches can be ignored any non-periodic task has no deadline 

 

 
 

Figure 4: RM Task scheduling 
 
Deferred Preemptions Scheduling (Dps) 
According to this method, each task τi defines a maximum interval of time qi in which 
it can execute non-preemptively[14]. Depending on the specific implementation, the 
non-preemptive interval can start after the invocation of a system call inserted at the 



120 Lavanya Dhanesh and Dr.P.Murugesan 
 
beginning of a non-preemptive region (floating model), or can be triggered by the 
arrival of a higher priority task (activation-triggered model). 
 
Round Robin (RR) Scheduling 
Works well for short jobs, typically used in timesharing systems. High overhead due 
to frequent context switches. Increases average waiting time, especially if CPU bursts 
are the same length and need more than one time quantum[15]. Because of high 
waiting times, deadlines are rarely met in a pure Round Robin system. 
 
 
Pre - Emptive Task Scheduling (Pts) 
Above all algorithms the Preemptive Task Scheduling Algorithm (PTS) is the only 
algorithm designed for preemptive distributed memory systems . PTS can not fully 
utilize the potential of a preemptive environment. It gives emphasis on load balancing 
and keeping the scheduling cost low. PTS schedules the tasks in the order of latest 
possible task time on the processor which has the least load at each iteration. The 
processor load is given by the number of tasks simultaneously running on that 
processor. In preemptive system the a task’s executing time on its assigned processor 
depends not only on task’s size, but also by the processor load. As the processor load 
keep on changing with time, it is not possible to calculate a task’s execution finish 
time ahead of time. So, execution finish time of a task have to be calculated on the 
run. Now we briefly describe the operations of the PTS algorithm. At first PTS 
computes the latest possible start time of the tasks, and it is used as the priority. Then 
PTS schedules one task at a time. At each iteration the ready task with the highest 
latest possible start time is selected. Then the task execution simulation is updated by 
stopping the tasks that would finish before current (to be scheduled) task. So, 
processor loads are updated, than the current task is scheduled. The key concept 
present in any operating system which allows the system to support multitasking, 
multiprocessing,etc. is Task Scheduling [1]. Task Scheduling is the core which refers 
to the way the different processes are allowed to share the common CPU. Scheduler 
and dispatcher are the softwares which help to carry out this assignment [2].In this 
type of algorithms the CPU access is taken away by the operating system kernel.In 
this scheduling if a first task is unable to execute for any reasons (if a page fault 
occurs) then the Kernal will stop executing the first task and the second task can begin 
its execution.If the fault occurs in one system it will not affect the entire application. 
OS schedules such that higher priority task when ready preempts the lower priority by 
blocking. Hence it solves the problem of large Worst case latency for the higher 
priority task 
 
 
 



Simulation And Comparison of Various Scheduling Algorithm For Improving et.al.  121 

 
 

Figure 5: Program counter assignments on the a scheduler call to preempt task 2. 
when priority of task_1 > task_2 > task_3 

 
 
Pre- Emptive Task Scheduling (Pts) Algorithm 

 
PTS () 
BEGIN 
For all tasks compute bottom levels. 
WHILE NOT all tasks scheduled DO 
t Task with the highest bottom level. 
MATt’s last message arrival time. 
Stop the tasks finishing before MAT 
and update their successors. 
ST t’s start time. 
pLeast loaded processor. 
Start task t on p at ST. 
ENDWHILE 
END 

 
Figure 6: The PTS algorithm 

 
 
Experimental Results 
Here we employ Lecroy USB Tracer software and SKYEYE simulator, a tool which 
gives accurate time of the Interrupt Service Routine which in turn is used to calculate 
the Interrupt latency. From the Interrupt Latency performance it is noted that when 
PTS algorithm if employed it gives good improvement in the performance of the 
Interrrupt Latency when compared with the other algorithms. The simulation output 
also gives the details of the number packets, synchronization of data, Packet length, 
Idle state and Time stamp which is useful to judge the performance improvement in 
the Interrupt latency. 
 
 
 
 
 
 



122 Lavanya Dhanesh and Dr.P.Murugesan 
 
 

 
Figure 7: Simulation Output 

 
 
Conclusion 
In our research we implemented the Preemptive Task Scheduling (PTS) algorithm to 
improve the performance of the Real-Time Interrupt Latency . When compared with 
other scheduling algorithms it is noted that the PTS algorithm gives a better 
performance in the Interrupt Latency of the Real-Time system. Thus by reducing the 
interrupt latency we can improve the performance of the Real –Time interrupt 
Latency . 
 
 
References 
 
[1] I. Ahmad and Y.-K. Kwok. A new approach to scheduling parallel programs 

using task duplication. pages 47–55. ICCP, 1994. 
[2] Y.-C. Chung and S. Ranka. Application and performance analysis of a 

compile-time optimization approach for list scheduling algorithms on 
distributed-memory multiprocessors. pages 512–521. Supercomputing, 1992. 

[3] E. G. Coffman Jr. and P. J. Denning. Operating Systems Theory. Prentice Hall, 
1973. 

[4] A. Gonzlez-Escribano, A. J. C. van Gemund, and V. Cardeoso-Payo. 
Performance trade-offs in series-parallel programming models. pages 183–
189. Eighth International Workshop on Compilers for Parallel Computers 
(CPC’00), Aussois, 2000. 

[5] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. on 
Applied Mathematics, pages 416–429, 1969. 

[6] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee. Scheduling precedence 
graphs in systems with interprocessor communication times. SIAM J. on 
Computing, 18(2):244–257, 1989. 

[7] M. Kafil and I. Ahmad. Optimal task assignment in heterogeneous computing 
systems. Heterogeneous Computing Workshop, 1997. 



Simulation And Comparison of Various Scheduling Algorithm For Improving et.al.  123 

[8] A. A. Khan, C. McCreary, and M. S. Jones. A comparison of multiprocessor 
scheduling heuristics. volume 2, pages 243–250. ICPP, 1994. 

[9] B. Kruatrachue and T. G. Lewis. Grain size determination for parallel 
processing. IEEE Software, pages 23–32, Jan 1988. 

[10] Y.-K. Kwok and I. Ahmad. Benchmarking the task graph scheduling 
algorithms. IPPS/SPDP, 1998. 

[11] C.-Y. Lee, J.-J. Hwang, Y.-C. Chow, and F. D. Anger. Multiprocessor 
scheduling with interprocssor communication delays. Operations Research 
Letters, 7:141–147, June 1988. 

[12] J.-C. Liou and M. A. Palis. A comparison of general approaches to 
multiprocessor scheduling. pages 152–156. Int’l Parallel Processing Symp, 
1997. 

[13] M. Maheswaran and H. J. Siegel. A dynamic matching and scheduling 
algorithm for heterogeneous computing systems. Heterogeneous Computing 
Workshop, 1998. 

[14] F. Mueller. A library implementation of posix threads under unix. Winter, 
1993. 

[15] G.-L. Park, B. Shirazi, J. Marquis, and H. Choo. Decisive path scheduling: A 
new list scheduling method. Int’l Conf. on Parallel Processing, 1997. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



124 Lavanya Dhanesh and Dr.P.Murugesan 
 
 
 
 
 
 
 
 
 
 
 
 
 


