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Abstract 

 

Nelder – Mead's unconstrained optimization method with multi-layer neural 

networks is implemented as a hybrid method for solving integral equations of 

different kinds. The proposed integral equation has been considered as an error 

function and Nelder-Mead method is used to minimize it. This method is 

capable of satisfying each type of integral equations. This algorithm by itself 

does have enough capability to be employed in finding solutions to each type 

of integral equations. Unsupervised learning is performed and the efficiency of 

the proposed method guarantees in each kind of Fredholm and Volterra 

equation. It may be time consuming in some rigorous problems, but high 

accuracy of convergence and approximation is preserved. We believe that 

large number of dimensions and variations does not create any problems in 

learning process. Numerical results obtained from Nelder Mead’s method 

shows its potential capability compares to existing relative method. 

 

Keywords: Integral equations, Multi-layer artificial neural networks, Nelder-

Mead method, Hidden layer. 

 

 

1. INTRODUCTION 

Integral equations as one of the most beautiful topics are still applicable for many 

practitioners in all fields of science and engineering [26]. Some issues are expressed 

by integral equations such as population dynamics, birth and death of biological 

species that live together in the same habitat, fish populations and predators, road 

winding a or wire, rotary rod, dangling chain, and a wire which has a bean moving on 

it. Other issues in terms of ordinary differential equations or partial derivatives are 

determined with boundary conditions which can be converted to integral equations 

[26, 14]. Several numerical methods for solving integral equations exist including: 

Babylonian et al; [4] has suggested Haar function in finding the solution of integral 
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equations. Karimi et al; [3] have solved Fredholm integral equations of the first kind 

using a least squares method. Adomian decomposition method, Homotopy 

perturbation method and Legendre wavelets are categorized in numerical methods 

which are performed in [1-5-6]. Dr. Babolian and Dr. Maleknejad et al; [15] have 

employed two-dimensional triangular functions to solve 2D Volterra integral- 

Fredholm equations. Dr. Maleknejad et al; [16] have suggested a direct method to 

solve 2D Volterra Hammerstein. Therefore, by using two-dimensional integral the 

given integral equation is converted to a non-linear equations system then the 

obtained solution is approximated. Maleknejad et al; [17] have implemented 

Bernstein polynomials to solve Volterra integral equations based on a new numerical 

hybrid method. Mosleh et al; [18] have solved fuzzy Volterra integral equations by an 

approximation of Bernstein polynomials. One tool that has been used in all branches 

of science is the science of artificial neural networks which is involved in solving 

integral equations. Jafarian et al; [20] were solved linear Fredholm integral equations 

by the neural network feed-back neural network approach. Golbabai et al; [8-9] have 

solved nonlinear integral equations system by RBF neural network with different 

learning rules. Jafarian et al; [19], have solved Abel integral equations by using an 

artificial neural network. In this paper, up and down functions as solutions in fuzzy 

function are approximated by a multi-layer neural network and back propagation 

learning algorithm is employed. In most of the studies, approximation is done by 

neural network which have created proper solution. In this paper, steepest descent 

optimization method is used. Asady et al; [21] have applied multi-layer artificial 

neural network and an optimization method to solve Fredholm integral equation of the 

second kind. Jafarian et al; [22] have considered local Bernstein polynomial to solve 

Fredholm linear equations. 

In this paper, different types of integral equations are solved by a neural network with 

a hidden layer and Nelder-Mead optimization method. First, the given equation is 

converted to a function of energy (cost) then the solution is getting parallel to a multi-

layer network. Finally, the network parameters (learning) are determined such that 

minimize the created cost function. The proposed method can be used even for 

different types of equations. Bidokhti et al; [27] have provided the solution to 

differential equations system with partial derivatives using neural networks and 

optimization techniques. 

 

 

2. OPTIMIZATION NELDER MEAD’S SIMPLEX METHOD 

Nelder - Mead method is a widely used algorithm in unconstrained optimization and it 

does not require calculation of derivatives. This algorithm works moderately well in 

applications of sciences and engineering. The function values at each vertex will be 

evaluated in each of iteration. It does not have to calculate derivatives to move along a 

function. However, through iterations, Nelder Mead’s simplex method does not rely 

on the gradient or partial derivatives. The Nelder–Mead method is a commonly 

applied numerical method used to find the minimum or maximum of an error. It is a 

direct search method of optimization that works moderately well for stochastic 

problems. Each iteration in nR  is formed by 1n vertices such as 
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 0 1, , , nX X X X .simplex vertices are sorted in ascending order based on the 

values of the function f. In other words, 0( )f X and ( )nf X are the best vertex and the 

worst vertex, respectively. Depending on three operations such as reflection, 

expansion and contraction, iterations are done. [10]. in each iteration, the worst vertex 
nX  will be replaced by another vertex which has just been found on cX , nX . 

 

 ,c c nX X RX X     

 

Where
1

0

/
n

c i

i
X X n





  is the centroids point of the best n vertices. The value of δ 

determines the type of repetition. For example, 1  , 2  ,
1

2
   represents 

reflection, expansion and contraction, respectively. (Fig. 1) 

 

 
 

 

 

Fig.1. Reflection, expansion and contraction in a simplex with 4 vertices 

 

Nelder Mead simplex method (SIM) may do shrink to form a new simplex. By 

Shrinking, all the vertices in X move forward to the best head vertex. 

  

2.1 Overview of Nelder Mead’s algorithm 

The main steps of Nelder Mead’s simplex method can be summarized as following: 

 Step 1: Initialization: choose an initial simplex of vertices  0 1
0 0 0 0, , , nX X X X . 

Evaluate f at the points in X0. Choose constants: 
00 1, 1 0 .s ic c r e            for 0,1,2,k   

kX X
 

 Step 2: sorting: sort the 1n  vertices of  0 1, , , nX X X X  so that 

0 0( ) ( ) ( ).n nf f X f f X f f X        

lX

icX cX 0cX rX eX

0X

2X
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 Step 3: Reflection: Reflect the worst vertex Xn over the centroids 
1

0

/
n

c i

i
X X n





  

of the remaining n vertices:  r c r c nX X X X   . Evaluate ( )r rf f X . If 
0 1r nf f f   , then replace Xn by the reflected point Xr and terminate the 

iteration:  0 1 1
1 ., , , ,n r

kX X X X X
   

 Step 4: expansion:  If 0rf f  , then calculate the extended points 

 ,e c e c nX X X X    
and evaluate ( )e ef f X . If e rf f , replace yn by the expansion point Xe and 

terminate the iteration: 

 0 1 1
1 ., , , ,n r

kX X X X X
 

 
 Step 5: contraction: If 1r nf f  , then a contraction is performed between the 

best of Xr and Xn. 

Outside contraction: If r nf f  , perform an outside contraction

 0 0c c c c nX X X X    

and evaluate 0 0( )c cf f X . If 0c rf f , then replace Xn by the outside 

contraction point 0c
kX  and        terminate the iteration: 

 0 1 1 0
1 ., , , ,n c

kX X X X X
   Otherwise, perform a shrink. 

Inside contraction: If r nf f , perform an inside contraction

 ic c ic c nX X X X    

Evaluate ( )ic icf f X . If ic rf f , then replace Xn by the inside contraction 

point ic
ky  and terminate the iteration:  0 1 1

1 ., , , ,n ic
kX X X X X
  Otherwise, 

perform a shrink. 

 

 Step 6: Shrinking: Evaluation f at the n-points  0 s i oX v X X  , 1,2, ,i n , 

and replace 1, , nX X  by these points, terminating the iteration:  

  0
1 ., 0,1, ,s i o

kX X v i nX X     
 

The most general properties of the Nelder-Mead algorithm and convergence have 

been mentioned in [7]. 

 

 

3. CONVERTING INTEGRAL EQUATION TO THE OPTIMIZATION 

PROBLEM 

In this section, taking into account the given integral equation and determining the 

desired interval to solve it, it will be converted to unconstrained optimization 

problem. If the solution to integral equation is on interval  ,c d  , then by selecting 

points from ,c d  an educational complex is provided and Then a multi-layer network 
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that is an approximator of integral equation , is trained. The integral equation is 

converted to a cost function so it will be unsupervised learning which is performed 

using Nelder-Mead. 

 

3.1 Conversion Integral equation to optimization problem 

Nonlinear Fredholm integral equation is considered: 

 

      ( , ) ( ),( ) ( ) ,g K x y h dy f xu x u y a b


                            (1) 

 

Where  2 ,f L a b ,  
22 ,K L a b  are known functions, ( )u x  is unknown and it is the 

solution to the equation, functions g and h are derivational on Ω. If 0  , it will be 

considered the equation of the first kind. Later we will select Volterra case for (1). We 

will approximate the unknown function ( )u x by a multi-layer neural network with 

input x and output ( )u x . Assume that ( , , )N x w b is the approximation of ( )u x which is 

a multi-layer network with weights w and bias b. we aim to solve equation (1) on 

interval ,c d . Obviously, if ( , , )N x w b is the approximation of ( )u x , for each 

 ,ix c d  we have ( , , )iN x w b which should be satisfied in (1). Therefore, by placing 

( , , )iN x w b in equation (1), then  

 

     ( , ) ( ).( , , ) ( , , )g K x y h dy f xN x w b N y w b


                                 (2) 

 

Now for  ,ix c d we attempt to satisfy (2), so it will be defined: 

 

     ( , , ) ( , ) ,( , , )i i ig N x w b K x y h dyN y w b 


                   (3) 

 And 

 

  ( ).i i if x                                                  (4) 

 

Note that for each  ,ix c d  value of i in (2), error is in ix . To achieve the global 

error in  ,c d , the error sum of squares is stated as follows:       

 

    2, ,i i
i I

E x N 


                                                                                            (5) 

 

Where I is the set of indexes for the points ix  on interval ,c d . Points ix  are not 

equally divided on  ,c d  and it may contain certain points, such as the local or 

Gaussian points. Function  ,iE x N  in (5) is called cost function which is a 

multivariate function based on neural network parameters (weights and bias). If E is 

close enough to zero, it has got its least value. Then the approximation of  , ,N x w b  
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would be appropriate to estimate ( )u x . The goal is to find the neural network 

parameters as: 

 

   ,ii
E Min E x N               (6)  

 

To find E, an unconstrained minimum problem will step in. Nelder-Mead method is 

used to find the optimal point in the optimization problem (6). Network training using 

optimization method is unsupervised. It is necessary to provide enough ix from  ,c d  

to meet arbitrary learning accuracy. If there are more of ix , it will require long 

running time. Sometimes it may take up to 30 minutes. Thus, computer program is set 

such that at the start there is few training data but at end of the epochs training data 

will be added more to minimize the error. Finally by the least number of training data, 

learning process will be accomplished. 

 

 

2.3 Conversion system of integral equations to the optimization problem and 

multilayer neural networks 

In this section, it will be shown that the integral equations can also be converted into 

an unconstrained optimization problem. Then the nature of the neural network which 

is designed to be used in this paper will be expressed.  

Consider the following nonlinear system of integral equations,  

 

  
0

( ) , , ( ) ( )
x

y x K x t y t dt g x  ,       (7) 

 

Where 

 

 

 

      

1

1

1

( ) ( ), , ,

( ) ( ), , ,

, , ( ) , , ( ) , , , , ( ) .

T
n

T
n

T
n

y x y x y x

g x g x g x

K x t y t K x t y t K x t y t







 

 

To get a solution to (7), assume that: 

 

  ( ) ,y x N w x .                      (8) 

 

Where N is a multi-layer neural network with input parameters w and x.  1 n n  is 

the applied network, n   is the number of hidden layer neurons, n is the number of 

output. The structure of this neural network could be seen in Figure 2. 
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Fig.2. MLP network for solving integral equations. 

 

The mathematical equations of network ( , )N w x  that approximate the solution of 

integral equation is formed as follows: 

 

  
1 11

( )
n nn

pj j pi ij
p jj

w x by x V 


 

 
  

 
 ,                                                                                                     

 

The transfer function is selected sigmoid function and network has n input and n 

output. The matrix form of this equation is as follows:  

 

   ( )y x V wx b   .                                                                                                                           

 

These two equation are stated for Figure 3 and the last layer includes no bias. Because 

(0) 0y  and if (0) 0y  such bias can also be added to the last layer, and if not, the 

learning process does not fail. Therefore, to ensure keeping (0) 0y  , the bias output 

layer has been removed. 

 

If the network N has only one input, then:  

 

  1 2

1 1

, , , ,
H n

n i ij j i
i j

N w x x x V S w x b
 

  
   

   
  ,             (9) 

 

Where H is the number of hidden layer neurons. It can also have more inputs and 

more outputs. The Accuracy of approximation depends on the number of neurons in 

the hidden layer not the number of layers. 

 

It has been proven that a multi-layer network with a hidden layer having enough 

neurons has more ability to approximate any continuous function with any accuracy 

[11]. The following theorems ensure the convergence of networks with a hidden layer. 
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Theorem 1: For every continuous function  : 0,1
nf   we have functions 

:y   and 

      0, ,2 0,1 0,1ii n S    

 

So 

    1

0 1

, , .
n n

n i i j
i i

f x x g V S x
 

 
  

 
                                                                   (10)  

 

Where 1, ,j n , 0 jN   1.    

 

Proof: see [12] 

 

Theorem 2: For every continuous function  : 0,1
nf R , there is bounded function

:S R R , natural number H and  , , 1, , , 1, ,i i ijb N w i H j n  constants. For 

each given 0  : 

 

   1

1 1

, , .
H n

n i ij j i
i j

f x x V S w x b 
 

  
    

   
                            (11) 

 

Proof: it is proven by applying Ston - Weirestrass theorem and Cybenko theorem [13]. 

 

Network outputs  ,N w x  are solution to integral equations system. In case of 

having integral equations system, network owns n output, and in case of having the 

integral equations network owns an output. Substituting network  ,N w x  in (7), a 

cost function is provided: 

  ,
0

( ) , , ( ) ( ),
ix

i j j i i j iN x K x t N t dt g x               (12) 

 

In which the jN  (outputs) are network components that approximates iy . The sum of 

squared errors
,i j is cost function which will be minimized. 

   2

, ,

1 1

,
m n

i j i jw i j
E Min E  

 

                                                           (13) 

 

Where m is the number of learning samples. Nelder-Mead method will be used to find 

the minimum  ,i jE  . 

 

Remark the existing definite integral in the equation need to be approximated in each 

iteration of the optimization process. Numerical trapezoidal methods, Simpson and 
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Romberg method provide acceptable solution to Fredholm integral equation or 

Volterra equation of the second kind, but due to high sensitivity of the first kind 

equations, the 10 - point Gaussian approximation method is used to solve them. 

 

 

3. ALGORITHM PROCEDURE 

To solve the equation using the method of converting equations to optimization 

problem takes a series of steps: 

 Step 1: identifying the interval  ,c d  then solving the integral equation. ξ is 

determined for the accuracy approximation. 

 Step 2: Determining the points ix of  ,c d  as the training data. (Training data 

percent may be selected for verification.) 

 Step 3: Designing of neural network. If it is an equation system, the number of 

outputs and unknown functions will be equal. 

 Step 4: creating the cost function which needs to be minimized and determining 

an appropriate numerical method to approximate definite integrals. If it is in a bad 

state, Romberg method or 10-point Gauss method is recommended to be 

employed. 

 Step 5: Implementing Nelder-Mead optimization method to minimize E. training 

will be continued until the amount of the cost function is getting lower than ξ. 

 

It is clear that after the successful implementation of the algorithm and finding the 

optimal parameters of the network N, the solution will be given as a neural network. 

Determining each  ,x c d  , solution to integral equation will be achieved. 10-point 

Gauss method can be applied to enhance the speed and accuracy in the integral 

approximation method used 10-point Gauss. For example, to approximate 

  
1

0
1

( ) ( )
n

i i
i

f t dt w f t


  

Parameters are (table 1). 

 

Table 1. Nods and weights of the Gauss-Legendre quadrature for n=10 

 

i ti wi 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.0130467357414141399610179 

0.0674683166555077446339516 

0.1602952158504877968828363 

0.2833023029353764046003670 

0.4255628305091843945575870 

0.5744371694908156054424130 

0.7166976970646235953996330 

0.8397047841495122031171637 

0.9325316833444922553660483 

0.9869532642585858600389820 

0.03333567215434406879678440 

0.07472567457529029657288817 

0.10954318125799102199776746 

0.13463335965499817754561346 

0.14776211235737643508694649 

0.14776211235737643508694649 

0.13463335965499817754561346 

0.10954318125799102199776746 

0.07472567457529029657288817 

0.03333567215434406879678440 
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For other interval transmission can be used. Comparing to Simpson and Romberg 

methods, this form requires less running time. It can be said that 8 to 10 neuron will 

be good enough to appropriate sine function with a relatively high frequency, but if 

learning is not efficient, number of neurons can be increased. Another way to select 

the appropriate number of hidden layer neuron is using growth and pruning method 

[23]. This method starts with one neuron, then by decreasing learning error it will 

increase, and when the error is large, the number of neurons decreases to the point 

that in a number of well-balanced, learning process ends. 

 

In this method, to achieve the desired accuracy, the following will be satisfied: 

a. Choosing initial weights and biases which are always small random numbers. 

b. The right choice for the number of repetitions in Nelder-Mead method. 

c. The number of epochs is required to achieve the desired accuracy. This 

number can be determined by trial and error or a defined scale. 

d. Nelder Mead method parameters for the majority of applications are: 

Expansion 2V   , 0.5   (contraction) , 1   (reflection) 

e. The number of intervals  ,c d to provide the test set. Thereby increasing the 

amount of these points’ results in increasing running time. In ordinary matters, 

the number of points is between 10 and 20. 

 

 

4. NUMERICAL RESULTS 

In this section, several examples are illustrated to point out the effectiveness of the 

method. As mentioned in previous sections, this method can be used to solve different 

kinds of integral equations. As a result, examples of different kinds have been 

selected. 

 

Example 1. Fredholm integral equation is given: 

 2

0

1
( ) sin( ) sin( )cos( ) ( )

2
u x x x t u t dt



   ,      (14) 

 

The Exact solution of function is ( ) sinu x x .  

 

After the converting (14) to an unconstrained optimization problem and solving the 

problem by using Nelder-Mead method, obtained results are given in table 2. 

 

Table 2: Obtained results of optimization error u (x) using neural network 

 

20

rx 
  

ˆ( ) ( )u x u x  

r = 0 

r = 1 

r = 2 

r = 3 

1.74147 × 10-4 

8.96395 × 10-5 

9.34409 × 10-5 

5.73489 × 10-5 
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r = 4 

r = 5 

r = 6 

r = 7 

r = 8 

r = 9 

r = 10 

1.53469 × 10-4 

1.56712 × 10-4 

1.27430 × 10-4 

3.15813 × 10-4 

5.41612 × 10-6 

4.77419 × 10-4 

1.01914 × 10-3 

 

 

Properties of method in the process of learning and optimization are as follows: 

a. The number of hidden layer neurons: 4 

b. The number of points for interval 0,
2

 
 
 

to create training data: 100 

c. Numerical method for integral approximation: Romberg with 5n   

d. The number of irritation of Nelder – Mead method: 8000 

e. If trapezoidal or Simpson method is used instead of Romberg method, we will 

get less accurate approximation. 

 

Example 2. Consider the nonlinear Fredholm integral equations system, [2] 

 

  

 

 

1

1 1 2
0

1
2 2

2 1 2
0

5 1
( ) ( ) ( )

18 3

2 1
( ) ( ) ( )

9 3

f x x f t f t dt

f x x f t f t dt


   



    





                      (15) 

 

Exact solutions include:  
1( )f x x  and 2

2( )f x x . This example is solved by 

Adomian decomposition method in [2] and the maximum error for  0,1x  in the 

functions 1( )f x and 2 ( )f x  are 0.0230 and 0.0443, respectively. 

 

In the method of converting to the optimization problem, after implementation of the 

Nelder-Mead method and successful learning, calculation error of functions 1f  ، 2f

shown in table (3). This table reveal the approximate value of the function f and ˆf . 

 

Network specifications include: 

 The number of neurons: 10  

 The number of interval  0,1 : 40  

 Numerical integration method: Gaussian 10- point 
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Table 3: Error of functions 
1f  ، 

2f  using neural network in example 2 

 

x 
1 1

ˆ( ) ( )f x f x  2 2
ˆ( ) ( )f x f x  

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.13760 × 10-4 

1.81569 × 10-4 

1.06722 × 10-4 

3.70786 × 10-4 

3.80033 × 10-4 

1.69787 × 10-4 

8.78871 × 10-5 

2.08392 × 10-4 

9.73456 × 10-5 

1.78070 × 10-4 

3.53236 × 10-4 

2.52494 × 10-3 

9.75329 × 10-4 

1.41206 × 10-3 

4.93032 × 10-4 

5.70629 × 10-4 

1.05137 × 10-3 

6.90843 × 10-4 

3.03296 × 10-4 

1.24563 × 10-3 

9.51582 × 10-4 

2.282100 × 10-3 

 

 

Steps to reduce the error sum of squares, shown in the Figure 3. 

 

 
 

Fig. 3. Reduction of the calculated error in Nelder-Mead method in example 2 

 

It can be seen in all iterations, error is reduced and the learning process is not swingy 

using Nelder-Mead method, because error has not increased, during the iteration. 

 

The greatest amount of error for the estimation of f1 belongs to Adomian 

decomposition method [2] of 0.0230. While the error of multi-layer neural network 

provides 3.80033×10-4. This result guaranties that estimation of f1 on  0,1  by multi-

layer neural network is very successful over Adomian decomposition method [2]. 
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The highest amount of errors for estimation of f2 using Adomian decomposition 

method is 0.0443, while for the same amount of error using multi-layer network is: 

2.282100 × 10-3. 

 

Neural network method superior to Adomian decomposition method in estimating f2. 

 

Example 3. Consider the following Fredholm integral equation of the first kind [3]: 

  

3

1 2 321
2 2 2

0

(1 )
( )

3

t tt S u s ds  
  ,  (16) 

 

( )u x x  is the exact solution. This example is solved in [3] by using the least 

squares method. In this paper, Gauss 8 - points is employed to approximate the 

infinite integrals. Here after creating cost function and implementation of the Nelder-

Mead method a novel approximation to ( )u x is achieved. The results are displayed in 

table (4): 

 

Table 4: Obtained errors using neural network and comparing them with Gauss 10-

points in example 3 

 

t *

4( ) ( )Lu t u t  *( ) ( )GLu t u t  Error of Neural 

Network 

0.9801449282487681 

0.4082826787521751 

0.1016667612931866 

0.2372337950418355 

0.5917173212478249 

0.8983332387068134 

0.7627662049581645 

0.0198550717512319 

1.94 × 10-4 

4.77 × 10-5 

7.94 × 10-4 

3.93 × 10-4 

1.69 × 10-4 

7.96 × 10-5 

8.45 × 10-5 

8.47 × 10-4 

4.28  × 10-2 

6.59  × 10-3 

1.79  × 10-3 

2.98  × 10-3 

1.59  × 10-2 

4.52  × 10-2 

3.04  × 10-2 

1.96  × 10-3 

1.96 × 10-3 

2.30 × 10-4 

6.20 × 10-4 

5.84 × 10-4 

6.35  × 10-4 

3.26  × 10-4 

8.34  × 10-4 

7.27 × 10-4 

 

 

In this example, Gauss 10-points method is employed to approximate infinite 

integrals. 

 

Properties of algorithm are as follows: 

a. The number of hidden layer neurons: 4 

b. The number of points on  0,1 to create training data: 10 

c. Numerical integrating method: Gauss-Legendre 10-points 

d. The number of iterative in Nelder - Mead method: 2500 

 

The amount of calculation error in the Gaussian 8-point for a number of different 

epochs in Nelder-Mead method along with exact and approximate figures are shown 

in the following figures. 
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Fig. 4. Graph of sum of squares error in different iterations 

 

 

 

 
 

Fig. 5. Approximate and exact solution of function u(x) after neural network learning 

in example 3 

 

According to the table 4, in the Gaussian 8 -point, obtained approximation by this 

method in third point, is better than approximation of 4 ( )u t   which is provided by 

using method in [3] while in other points, is either the same  or very small. We note 

that the results obtained by proposed method have better result than approximation

( )Gu t  in [3] which guarantees this method more efficient for solving integral 

equations. The sum of squares error after ending to learning process is 

 

  123.1274 10E    
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Example 4. Consider the following Fredholm integral equation of the first kind [3]: 

  
1

1

0

1
( ) ,

1

t
ts ee u s ds

t

 


              (17) 

 

Where *( ) tu t e  is the exact solution. After the implementation of the proposed 

method, the error sum of squares is 3.93454856 × 10-14. In this instance, a numerical 

method- Gauss-Legendre 10-point- is used to approximate infinite integrals. Here 

there are 3198 iterative in Nelder-Mead method and 3 neurons in the hidden layer. 

 

Table 5. Error of approximate and exact solution of function u(x) in some points  

[0, 1] in example 4 

 
*( ) ( )u x u x  x 

4.36075 × 10-3 

2.62983 × 10-5 

3.39746 × 10-3 

3.03088 × 10-3 

5.50632 × 10-4 

4.47659 × 10-3 

4.94309 × 10-3 

3.53404 × 10-4 

8.10120 × 10-3 

5.15755 × 10-3 

1.76206 × 10-2 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

 

 

Given the maximum error in [3] and the table 5, it can be said that, in some points on 

 0,1 the proposed approximation method seems to be efficient as method in [3] equal. 

And error in other points is negligible. It is clear that integral equation of the first kind 

gives the appropriate results in Table 5. In fact, the greatest error in the method in [3] 

is 8.33 × 10-3. Based on the above table it is obvious that, multi-layer neural network 

performance is more efficient than of the method in [3]. Note that a designed multi-

layer network with 3 neurons in hidden layer is achieved in Table 6. Error curve and 

how to reduce it during the iterations in illustrated in Figure 6. 
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Fig. 6. Steps of reducing the error using neural network in example 4. 

 

 

Example 5. Consider the nonlinear integral equation [k1]: 

 

  
1 32 1

0
( ) 1( )

x y xu x e dy e a xu y      

 

Where ( ) xu x e  is the exact solution. Babylonian et al; [24] have solved this 

equation using Haar wavelet method. In this paper, this equation is solved by multi-

layer network and unsupervised learning rule, Nelder-Mead method. In both methods, 

the error in some points on 0,1 , can be seen in the following table: 

 

Table 6: Comparing the errors of the Haar wavelet method [24] and neural network 

Nelder-Mead method for example 5 

 

neural-network , nelder-Mead exact Haar waveletu u   [24]  x 

4.8851 × 10-4 

8.3051 × 10-4 

9.6731 × 10-5 

9.1702 × 10-4 

1.4244 × 10-3 

9.8000 × 10-4 

3.098 × 10-4 

1.6423 × 10-3 

1.3996 × 10-3 

0.002046 

0.003299 

0.008693 

0.016906 

0.018681 

0.011742 

0.002927 

0.008084 

0.021624 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 
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Once neural network is trained, the exact function and approximate figure can be seen 

in the figure 7. 

 
 

Fig.7. The exact and approximate graph ( ) xu x e  of neural network for example 5 

 

Also steps to reducing the error for a period of time during iteration of Nelder- Mead, 

is seen in the figure 8: 

 
 

Fig.8. Amount of error during iterations of Nelder- Mead for example 5 

 

Based on the results of this section as summarized in looking up Table we believe that 

the accuracy of multi-layer neural network to solve Example 5 is more efficient than 

Haar wavelet-method [24]. Haar wavelet method errors, on  0,1 is about 0.01 or 

0.001 while in multi-layered neural networks nit can be about 0.00001, This ability is 

due to high approximation of  multi-layer networks, and on the other hand Nelder-

Mead method is also able to reduce arbitrarily the error sum of squares. As previously 
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mentioned, one of the important features of multi-layer neural networks is that it can 

be used in any type of integral equation. 

 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

In this paper, our main focus was to present an emerging method based on the concept 

of neural networks for solving differential equations. Here in this study, we have 

started with converting the given integral equation to an unconstrained optimization 

problem in order to find solution with sufficient accuracy. We have also presented 

some basic concept of neural network and Nelder-Mead that is required for the study. 

Different neural network methods based on multi-layer perceptron, Nelder-Mead 

method, and finite element etc. are then presented for solving differential equations. It 

has been pointed out that the employment of proposed method owns many attractive 

features towards the problem compared to the other existing methods in the literature. 

The parameters (weights, centers and widths) of the approximate solution are adjusted 

by using an unconstrained optimization problem. Preparation of input data, robustness 

of methods and the high accuracy of the solutions made this method highly 

acceptable. The main advantage of the proposed approach is that once the network is 

trained, it allows evaluation of the solution at any desired number of points 

instantaneously with negligible error. Moreover, it can be used to solve the equations 

of various kinds. Once the type of differential equation is changed, the method is still 

convergence with different accuracy. More precisely, once the numerical examples 

are employed, Nelder-Mead method is converging to approximate solution for various 

problems. But sometimes to approach the accuracy of more than three decimal, we 

need to devote running time about 30 to 40 minutes. The proposed method satisfies in 

Volterra or Fredholm integral equation of the first and second kind.  Note that in most 

integral equations, the network with 1-4 neurons in the hidden layer converges with 

acceptable accuracy to the solution. The following is a list of a few changes can rise 

the efficiently of the method: 

 

1. Change the optimization method.  

2. Change the definite integral approximation method.  

3. Change the network architecture. For example, RBF network instead of a 

multi-layer network.  

4. The use of computers with high-speed calculation to perform as much 

iteration. 
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